Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Actions

Share

.2010:2010:6587-90.
doi: 10.1109/IEMBS.2010.5627125.

Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning

Affiliations

Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning

Li-Chen Shi et al. Annu Int Conf IEEE Eng Med Biol Soc.2010.

Abstract

For many human machine interaction systems, to ensure work safety, the techniques for continuously estimating the vigilance of operators are highly desirable. Up to now, various methods based on electroencephalogram (EEG) are proposed to solve this problem. However, most of them are static methods and are based on supervised learning strategy. The main deficiencies of the existing methods are that the label information is hard to get and the time dependency of vigilance changes are ignored. In this paper, we introduce the dynamic characteristics of vigilance changes into vigilance estimation and propose a novel model based on linear dynamical system and manifold learning techniques to implement off-line and online vigilance estimation. In this model, both spatial information of EEG and temporal information of vigilance changes are used. The label information what we need is merely to know which EEG indices are important for vigilance estimation. Experimental results show that the mean off-line and on-line correlation coefficients between estimated vigilance level and local error rate in second-scale without being averaged are 0.89 and 0.83, respectively.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp