Dependency of phenprocoumon dosage on polymorphisms in the VKORC1, CYP2C9, and CYP4F2 genes
- PMID:21063236
- DOI: 10.1097/FPC.0b013e32834154fb
Dependency of phenprocoumon dosage on polymorphisms in the VKORC1, CYP2C9, and CYP4F2 genes
Abstract
Background: Genome-wide association studies (GWAS) on warfarin and acenocoumarol showed that interindividual dosage variation is mainly associated with single nucleotide polymorphisms (SNPs) in VKORC1 and to a lesser extent in CYP2C9 and CYP4F2. For phenprocoumon dosage, the genes encoding CYP3A4 and ApoE might play a role.
Objective: To assess the association between common genetic variants within VKORC1, CYP2C9, CYP4F2, CYP3A4, and ApoE and phenprocoumon maintenance dosage, and to identify novel signals using GWAS.
Methods: We selected all participants from the Rotterdam study who were treated with phenprocoumon. For each SNP, we tested the association between the above-mentioned genotypes and age, sex, body mass index, and target INR adjusted-phenprocoumon maintenance dosage.
Results: Within our study population (N=244), VKORC1, CYP2C9, CYP4F2 genotypes together explained 46% of phenprocoumon maintenance dosage variation. Each additional VKORC1 variant allele reduced phenprocoumon maintenance dosage by 4.8 mg/week (P<0.0001) and each additional CYP2C9 variant allele by 2.2 mg/week (P=0.002). Each additional variant allele of CYP4F2 increased phenprocoumon dosage by 1.5 mg/week (P=0.022). Variant alleles of CYP3A41*B and ApoE showed no association with phenprocoumon dosage. Genome-wide significant SNPs were all related to VKORC1 activity. Best associated were two SNPs in complete linkage disequilibrium with each other and with SNPs within VKORC1: rs10871454 [Syntaxin 4A (STX4A)] and rs11150604 (ZNF646), each with a P value of 2.1×10⁻²². Each reduced phenprocoumon maintenance dosage weekly by 4.9 mg per variant allele.
Conclusion: Similar to earlier findings with warfarin and acenocoumarol, phenprocoumon maintenance dosage depended on polymorphisms in the VKORC1 gene. CYP2C9 and CYP4F2 were of modest relevance.
Similar articles
- A genome-wide association study of acenocoumarol maintenance dosage.Teichert M, Eijgelsheim M, Rivadeneira F, Uitterlinden AG, van Schaik RH, Hofman A, De Smet PA, van Gelder T, Visser LE, Stricker BH.Teichert M, et al.Hum Mol Genet. 2009 Oct 1;18(19):3758-68. doi: 10.1093/hmg/ddp309. Epub 2009 Jul 4.Hum Mol Genet. 2009.PMID:19578179
- Genetic determinants of acenocoumarol and phenprocoumon maintenance dose requirements.Cadamuro J, Dieplinger B, Felder T, Kedenko I, Mueller T, Haltmayer M, Patsch W, Oberkofler H.Cadamuro J, et al.Eur J Clin Pharmacol. 2010 Mar;66(3):253-60. doi: 10.1007/s00228-009-0768-7. Epub 2009 Dec 18.Eur J Clin Pharmacol. 2010.PMID:20020283
- Impact of genetic factors (CYP2C9, VKORC1 and CYP4F2) on warfarin dose requirement in the Turkish population.Özer M, Demirci Y, Hizel C, Sarikaya S, Karalti İ, Kaspar Ç, Alpan S, Genç E.Özer M, et al.Basic Clin Pharmacol Toxicol. 2013 Mar;112(3):209-14. doi: 10.1111/bcpt.12024. Epub 2012 Dec 6.Basic Clin Pharmacol Toxicol. 2013.PMID:23061746Clinical Trial.
- Pharmacogenetics of oral anticoagulants: a basis for dose individualization.Stehle S, Kirchheiner J, Lazar A, Fuhr U.Stehle S, et al.Clin Pharmacokinet. 2008;47(9):565-94. doi: 10.2165/00003088-200847090-00002.Clin Pharmacokinet. 2008.PMID:18698879Review.
- Pharmacogenetic differences between warfarin, acenocoumarol and phenprocoumon.Beinema M, Brouwers JR, Schalekamp T, Wilffert B.Beinema M, et al.Thromb Haemost. 2008 Dec;100(6):1052-7.Thromb Haemost. 2008.PMID:19132230Review.
Cited by
- Phenprocoumon Dose Requirements, Dose Stability and Time in Therapeutic Range in Elderly Patients WithCYP2C9 andVKORC1 Polymorphisms.Schneider KL, Kunst M, Leuchs AK, Böhme M, Weckbecker K, Kastenmüller K, Bleckwenn M, Holdenrieder S, Coch C, Hartmann G, Stingl JC.Schneider KL, et al.Front Pharmacol. 2020 Jan 28;10:1620. doi: 10.3389/fphar.2019.01620. eCollection 2019.Front Pharmacol. 2020.PMID:32047440Free PMC article.
- Pharmacogenetic studies with oral anticoagulants. Genome-wide association studies in vitamin K antagonist and direct oral anticoagulants.Cullell N, Carrera C, Muiño E, Torres N, Krupinski J, Fernandez-Cadenas I.Cullell N, et al.Oncotarget. 2018 Jun 26;9(49):29238-29258. doi: 10.18632/oncotarget.25579. eCollection 2018 Jun 26.Oncotarget. 2018.PMID:30018749Free PMC article.Review.
- Identifying genetic loci affecting antidepressant drug response in depression using drug-gene interaction models.Noordam R, Avery CL, Visser LE, Stricker BH.Noordam R, et al.Pharmacogenomics. 2016 Jun;17(9):1029-40. doi: 10.2217/pgs-2016-0024. Epub 2016 Jun 1.Pharmacogenomics. 2016.PMID:27248517Free PMC article.Review.
- Role of Cytochrome P450 Hydroxylase in the Decreased Accumulation of Vitamin E in Muscle from Turkeys Compared to that from Chickens.Perez DM, Richards MP, Parker RS, Berres ME, Wright AT, Sifri M, Sadler NC, Tatiyaborworntham N, Li N.Perez DM, et al.J Agric Food Chem. 2016 Jan 27;64(3):671-80. doi: 10.1021/acs.jafc.5b05433. Epub 2016 Jan 12.J Agric Food Chem. 2016.PMID:26653675Free PMC article.
- Vitamin K antagonist anticoagulant usage is associated with increased incidence and progression of osteoarthritis.Boer CG, Szilagyi I, Nguyen NL, Neogi T, Meulenbelt I, Ikram MA, Uitterlinden AG, Bierma-Zeinstra S, Stricker BH, van Meurs JB.Boer CG, et al.Ann Rheum Dis. 2021 May;80(5):598-604. doi: 10.1136/annrheumdis-2020-219483. Epub 2021 Apr 12.Ann Rheum Dis. 2021.PMID:34412027Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous