Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.1990 Jan 25;265(3):1253-60.

The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins

Affiliations
  • PMID:2104837
Free article

The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins

J K Lanyi et al. J Biol Chem..
Free article

Abstract

We cloned and sequenced the gene coding for the polypeptide of a halorhodopsin in Natronobacterium pharaonis (named here pharaonis halorhodopsin). Peptide sequencing of cyanogen bromide fragments, and immunoreactions of the protein and synthetic peptides derived from the COOH-terminal gene sequence, confirmed that the open reading frame is the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences, as well as those for other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences (mutations/nucleotide at codon positions which do not result in amino acid changes) were calculated. These indicate very considerable evolutionary distance between each pair of genes. In spite of this, the three protein sequences show extensive similarities, indicating strong selective pressures. Conserved and conservatively replaced amino acid residues in all three proteins identify general features essential for ion-motive bacterial rhodopsins, responsible for overall structure and chromophore properties. Comparison of the bacteriorhodopsin sequence with those of the two halorhodopsins, on the other hand, identifies features involved in their specific (proton and chloride ion) transport functions.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Associated data

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp