Comparative genomic analysis of fruiting body formation in Myxococcales
- PMID:21037205
- DOI: 10.1093/molbev/msq292
Comparative genomic analysis of fruiting body formation in Myxococcales
Abstract
Genetic programs underlying multicellular morphogenesis and cellular differentiation are most often associated with eukaryotic organisms, but examples also exist in bacteria such as the formation of multicellular, spore-filled fruiting bodies in the order Myxococcales. Most members of the Myxococcales undergo a multicellular developmental program culminating in the formation of spore-filled fruiting bodies in response to starvation. To gain insight into the evolutionary history of fruiting body formation in Myxococcales, we performed a comparative analysis of the genomes and transcriptomes of five Myxococcales species, four of these undergo fruiting body formation (Myxococcus xanthus, Stigmatella aurantiaca, Sorangium cellulosum, and Haliangium ochraceum) and one does not (Anaeromyxobacter dehalogenans). Our analyses show that a set of 95 known M. xanthus development-specific genes--although suffering from a sampling bias--are overrepresented and occur more frequently than an average M. xanthus gene in S. aurantiaca, whereas they occur at the same frequency as an average M. xanthus gene in S. cellulosum and in H. ochraceum and are underrepresented in A. dehalogenans. Moreover, genes for entire signal transduction pathways important for fruiting body formation in M. xanthus are conserved in S. aurantiaca, whereas only a minority of these genes are conserved in A. dehalogenans, S. cellulosum, and H. ochraceum. Likewise, global gene expression profiling of developmentally regulated genes showed that genes that upregulated during development in M. xanthus are overrepresented in S. aurantiaca and slightly underrepresented in A. dehalogenans, S. cellulosum, and H. ochraceum. These comparative analyses strongly indicate that the genetic programs for fruiting body formation in M. xanthus and S. aurantiaca are highly similar and significantly different from the genetic program directing fruiting body formation in S. cellulosum and H. ochraceum. Thus, our analyses reveal an unexpected level of plasticity in the genetic programs for fruiting body formation in the Myxococcales and strongly suggest that the genetic program underlying fruiting body formation in different Myxococcales is not conserved. The evolutionary implications of this finding are discussed.
Similar articles
- Investigation of cytochromes P450 in myxobacteria: excavation of cytochromes P450 from the genome of Sorangium cellulosum So ce56.Khatri Y, Hannemann F, Perlova O, Müller R, Bernhardt R.Khatri Y, et al.FEBS Lett. 2011 Jun 6;585(11):1506-13. doi: 10.1016/j.febslet.2011.04.035. Epub 2011 Apr 22.FEBS Lett. 2011.PMID:21521637Review.
- Control of morphogenesis in myxobacteria.Shimkets LJ.Shimkets LJ.Crit Rev Microbiol. 1987;14(3):195-227. doi: 10.3109/10408418709104439.Crit Rev Microbiol. 1987.PMID:3107905Review.
- Coupling cell movement to multicellular development in myxobacteria.Kaiser D.Kaiser D.Nat Rev Microbiol. 2003 Oct;1(1):45-54. doi: 10.1038/nrmicro733.Nat Rev Microbiol. 2003.PMID:15040179Review.
- The phosphatomes of the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum in comparison with other prokaryotic genomes.Treuner-Lange A.Treuner-Lange A.PLoS One. 2010 Jun 17;5(6):e11164. doi: 10.1371/journal.pone.0011164.PLoS One. 2010.PMID:20567509Free PMC article.
- Transcriptomic analysis of the Myxococcus xanthus FruA regulon, and comparative developmental transcriptomic analysis of two fruiting body forming species, Myxococcus xanthus and Myxococcus stipitatus.McLoon AL, Boeck ME, Bruckskotten M, Keyel AC, Søgaard-Andersen L.McLoon AL, et al.BMC Genomics. 2021 Nov 1;22(1):784. doi: 10.1186/s12864-021-08051-w.BMC Genomics. 2021.PMID:34724903Free PMC article.
Cited by
- Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259.Huntley S, Zhang Y, Treuner-Lange A, Kneip S, Sensen CW, Søgaard-Andersen L.Huntley S, et al.J Bacteriol. 2012 Jun;194(11):3012-3. doi: 10.1128/JB.00397-12.J Bacteriol. 2012.PMID:22582372Free PMC article.
- Draft Genome Sequence of the Fruiting MyxobacteriumNannocystis exedens DSM 71.Treuner-Lange A, Bruckskotten M, Rupp O, Goesmann A, Søgaard-Andersen L.Treuner-Lange A, et al.Genome Announc. 2017 Oct 26;5(43):e01227-17. doi: 10.1128/genomeA.01227-17.Genome Announc. 2017.PMID:29074673Free PMC article.
- devI is an evolutionarily young negative regulator of Myxococcus xanthus development.Rajagopalan R, Wielgoss S, Lippert G, Velicer GJ, Kroos L.Rajagopalan R, et al.J Bacteriol. 2015 Apr;197(7):1249-62. doi: 10.1128/JB.02542-14. Epub 2015 Feb 2.J Bacteriol. 2015.PMID:25645563Free PMC article.
- Intra- and interprotein phosphorylation between two-hybrid histidine kinases controls Myxococcus xanthus developmental progression.Schramm A, Lee B, Higgs PI.Schramm A, et al.J Biol Chem. 2012 Jul 20;287(30):25060-72. doi: 10.1074/jbc.M112.387241. Epub 2012 Jun 1.J Biol Chem. 2012.PMID:22661709Free PMC article.
- A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus.Keilberg D, Wuichet K, Drescher F, Søgaard-Andersen L.Keilberg D, et al.PLoS Genet. 2012 Sep;8(9):e1002951. doi: 10.1371/journal.pgen.1002951. Epub 2012 Sep 13.PLoS Genet. 2012.PMID:23028358Free PMC article.
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources
Molecular Biology Databases