Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Silverchair Information Systems full text link Silverchair Information Systems
Full text links

Actions

Share

Comparative Study
.2011 Feb;28(2):1083-97.
doi: 10.1093/molbev/msq292. Epub 2010 Oct 29.

Comparative genomic analysis of fruiting body formation in Myxococcales

Affiliations
Comparative Study

Comparative genomic analysis of fruiting body formation in Myxococcales

Stuart Huntley et al. Mol Biol Evol.2011 Feb.

Abstract

Genetic programs underlying multicellular morphogenesis and cellular differentiation are most often associated with eukaryotic organisms, but examples also exist in bacteria such as the formation of multicellular, spore-filled fruiting bodies in the order Myxococcales. Most members of the Myxococcales undergo a multicellular developmental program culminating in the formation of spore-filled fruiting bodies in response to starvation. To gain insight into the evolutionary history of fruiting body formation in Myxococcales, we performed a comparative analysis of the genomes and transcriptomes of five Myxococcales species, four of these undergo fruiting body formation (Myxococcus xanthus, Stigmatella aurantiaca, Sorangium cellulosum, and Haliangium ochraceum) and one does not (Anaeromyxobacter dehalogenans). Our analyses show that a set of 95 known M. xanthus development-specific genes--although suffering from a sampling bias--are overrepresented and occur more frequently than an average M. xanthus gene in S. aurantiaca, whereas they occur at the same frequency as an average M. xanthus gene in S. cellulosum and in H. ochraceum and are underrepresented in A. dehalogenans. Moreover, genes for entire signal transduction pathways important for fruiting body formation in M. xanthus are conserved in S. aurantiaca, whereas only a minority of these genes are conserved in A. dehalogenans, S. cellulosum, and H. ochraceum. Likewise, global gene expression profiling of developmentally regulated genes showed that genes that upregulated during development in M. xanthus are overrepresented in S. aurantiaca and slightly underrepresented in A. dehalogenans, S. cellulosum, and H. ochraceum. These comparative analyses strongly indicate that the genetic programs for fruiting body formation in M. xanthus and S. aurantiaca are highly similar and significantly different from the genetic program directing fruiting body formation in S. cellulosum and H. ochraceum. Thus, our analyses reveal an unexpected level of plasticity in the genetic programs for fruiting body formation in the Myxococcales and strongly suggest that the genetic program underlying fruiting body formation in different Myxococcales is not conserved. The evolutionary implications of this finding are discussed.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Related information

LinkOut - more resources

Full text links
Silverchair Information Systems full text link Silverchair Information Systems
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp