Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

Review
.2010 Oct:12 Suppl 2:83-92.
doi: 10.1111/j.1463-1326.2010.01275.x.

Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c

Affiliations
Review

Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c

P Ferré et al. Diabetes Obes Metab.2010 Oct.

Abstract

Steatosis is an accumulation of triglycerides in the liver. Although an excessive availability of plasma fatty acids is an important determinant of steatosis, lipid synthesis from glucose (lipogenesis) is now also considered as an important contributing factor. Lipogenesis is an insulin- and glucose-dependent process that is under the control of specific transcription factors, sterol regulatory element binding protein 1c (SREBP-1c), activated by insulin and carbohydrate response element binding protein (ChREBP) activated by glucose. Insulin induces the maturation of SREBP-1c by a proteolytic mechanism initiated in the endoplasmic reticulum (ER). SREBP-1c in turn activates glycolytic gene expression, allowing glucose metabolism, and lipogenic genes in conjunction with ChREBP. Lipogenesis activation in the liver of obese markedly insulin-resistant steatotic rodents is then paradoxical. Recent data suggest that the activation of SREBP-1c and thus of lipogenesis is secondary in the steatotic liver to an ER stress. The ER stress activates the cleavage of SREBP-1c independent of insulin, thus explaining the paradoxical stimulation of lipogenesis in an insulin-resistant liver. Inhibition of the ER stress in obese rodents decreases SREBP-1c activation and lipogenesis and improves markedly hepatic steatosis and insulin sensitivity. ER is thus a new partner in steatosis and metabolic syndrome which is worth considering as a potential therapeutic target.

© 2010 Blackwell Publishing Ltd.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp