Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2010 Oct 26;20(20):1834-9.
doi: 10.1016/j.cub.2010.09.008. Epub 2010 Oct 7.

Cetaceans on a molecular fast track to ultrasonic hearing

Affiliations
Free article

Cetaceans on a molecular fast track to ultrasonic hearing

Yang Liu et al. Curr Biol..
Free article

Abstract

The early radiation of cetaceans coincides with the origin of their defining ecological and sensory differences [1, 2]. Toothed whales (Odontoceti) evolved echolocation for hunting 36-34 million years ago, whereas baleen whales (Mysticeti) evolved filter feeding and do not echolocate [2]. Echolocation in toothed whales demands exceptional high-frequency hearing [3], and both echolocation and ultrasonic hearing have also evolved independently in bats [4, 5]. The motor protein Prestin that drives the electromotility of the outer hair cells (OHCs) is likely to be especially important in ultrasonic hearing, because it is the vibratory response of OHC to incoming sound waves that confers the enhanced sensitivity and selectivity of the mammalian auditory system [6, 7]. Prestin underwent adaptive change early in mammal evolution [8] and also shows sequence convergence between bats and dolphins [9, 10], as well as within bats [11]. Focusing on whales, we show for the first time that the extent of protein evolution in Prestin can be linked directly to the evolution of high-frequency hearing. Moreover, we find that independent cases of sequence convergence in mammals have involved numerous identical amino acid site replacements. Our findings shed new light on the importance of Prestin in the evolution of mammalian hearing.

Copyright © 2010 Elsevier Ltd. All rights reserved.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Associated data

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp