Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

.2010 Jun;13(6):744-53.
doi: 10.1111/j.1461-0248.2010.01469.x.

Diversification of honest signals in a predator-prey system

Affiliations

Diversification of honest signals in a predator-prey system

Michael P Speed et al. Ecol Lett.2010 Jun.

Abstract

Many animals use bright colouration to advertise their toxicity to predators. It is now well established that both toxicity and colouration are often variable within prey populations, yet it is an open question whether or not brighter signals should be used by the more toxic members of the population. We therefore describe a model in which signal honesty can easily be explained. We assumed that prey toxicity is environmentally conferred and variable between individuals, and that signalling bears a cost through attracting the attention of predators. A key assumption is that predators know the mean toxicity associated with each signalling level, so that the probability of attack for each signal value declines as mean toxicity associated with that signal increases. The probability of death given attack for each individual, however, declines with the precise value of its own toxicity, and prey must evolve the optimal level of signal to match the toxicity level that they acquire from their environments. At the start of our simulations there is no signalling system, as neither prey nor predators have biases that favour signal diversification. Over evolutionary time, however, a positive correlation emerges between signal strength and the mean toxicity associated with each signal level. When stability is reached, predators change their behaviour so that they now tend to avoid prey that signal conspicuously. In addition to predicting within-species signal reliability, our model can explain the initial evolution of aposematic displays without the need to assume special biases in predators.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp