Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons
- PMID:20522554
- PMCID: PMC2915732
- DOI: 10.1074/jbc.M110.145813
Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons
Abstract
In addition to its primary role as a fundamental component of the SNARE complex, SNAP-25 also modulates voltage-gated calcium channels (VGCCs) in various overexpression systems. Although these studies suggest a potential negative regulatory role of SNAP-25 on VGCC activity, the effects of endogenous SNAP-25 on native VGCC function in neurons are unclear. In the present study, we investigated the VGCC properties of cultured glutamatergic and GABAergic rat hippocampal neurons. Glutamatergic currents were dominated by P/Q-type channels, whereas GABAergic cells had a dominant L-type component. Also, glutamatergic VGCC current densities were significantly lower with enhanced inactivation rates and shifts in the voltage dependence of activation and inactivation curves compared with GABAergic cells. Silencing endogenous SNAP-25 in glutamatergic neurons did not alter P/Q-type channel expression or localization but led to increased VGCC current density without changes in the VGCC subtype proportions. Isolation of the P/Q-type component indicated that increased current in the absence of SNAP-25 was correlated with a large depolarizing shift in the voltage dependence of inactivation. Overexpressing SNAP-25 in GABAergic neurons reduced current density without affecting the VGCC subtype proportion. Accordingly, VGCC current densities in glutamatergic neurons from Snap-25(+/-) mice were significantly elevated compared with wild type glutamatergic neurons. Overall, this study demonstrates that endogenous SNAP-25 negatively regulates native VGCCs in glutamatergic neurons which could have important implications for neurological diseases associated with altered SNAP-25 expression.
Figures






Similar articles
- Inactivation kinetics of voltage-gated calcium channels in glutamatergic neurons are influenced by SNAP-25.Condliffe SB, Matteoli M.Condliffe SB, et al.Channels (Austin). 2011 Jul-Aug;5(4):304-7. doi: 10.4161/chan.5.4.16228. Epub 2011 Jul 1.Channels (Austin). 2011.PMID:21558797
- The role of the t-SNARE SNAP-25 in action potential-dependent calcium signaling and expression in GABAergic and glutamatergic neurons.Tafoya LC, Shuttleworth CW, Yanagawa Y, Obata K, Wilson MC.Tafoya LC, et al.BMC Neurosci. 2008 Oct 29;9:105. doi: 10.1186/1471-2202-9-105.BMC Neurosci. 2008.PMID:18959796Free PMC article.
- Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels.Pozzi D, Condliffe S, Bozzi Y, Chikhladze M, Grumelli C, Proux-Gillardeaux V, Takahashi M, Franceschetti S, Verderio C, Matteoli M.Pozzi D, et al.Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):323-8. doi: 10.1073/pnas.0706211105. Epub 2007 Dec 27.Proc Natl Acad Sci U S A. 2008.PMID:18162553Free PMC article.
- Voltage-gated calcium channels in autonomic neuroeffector transmission.Waterman SA.Waterman SA.Prog Neurobiol. 2000 Feb;60(2):181-210. doi: 10.1016/s0301-0082(99)00025-8.Prog Neurobiol. 2000.PMID:10639054Review.
- The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release.Pozzi D, Corradini I, Matteoli M.Pozzi D, et al.Neuroscience. 2019 Nov 10;420:72-78. doi: 10.1016/j.neuroscience.2018.11.009. Epub 2018 Nov 23.Neuroscience. 2019.PMID:30476527Review.
Cited by
- Mutant PrP suppresses glutamatergic neurotransmission in cerebellar granule neurons by impairing membrane delivery of VGCC α(2)δ-1 Subunit.Senatore A, Colleoni S, Verderio C, Restelli E, Morini R, Condliffe SB, Bertani I, Mantovani S, Canovi M, Micotti E, Forloni G, Dolphin AC, Matteoli M, Gobbi M, Chiesa R.Senatore A, et al.Neuron. 2012 Apr 26;74(2):300-13. doi: 10.1016/j.neuron.2012.02.027.Neuron. 2012.PMID:22542184Free PMC article.
- An updated review on animal models to study attention-deficit hyperactivity disorder.Kim D, Yadav D, Song M.Kim D, et al.Transl Psychiatry. 2024 Apr 11;14(1):187. doi: 10.1038/s41398-024-02893-0.Transl Psychiatry. 2024.PMID:38605002Free PMC article.Review.
- Exploring the Hereditary Nature of Migraine.Bron C, Sutherland HG, Griffiths LR.Bron C, et al.Neuropsychiatr Dis Treat. 2021 Apr 22;17:1183-1194. doi: 10.2147/NDT.S282562. eCollection 2021.Neuropsychiatr Dis Treat. 2021.PMID:33911866Free PMC article.Review.
- Genetic Risk Loci and Familial Associations in Migraine: A Genome-Wide Association Study in the Han Chinese Population of Taiwan.Liu Y, Yeh PK, Lin YK, Liang CS, Tsai CL, Lin GY, An YC, Tsai MC, Hung KS, Yang FC.Liu Y, et al.J Clin Neurol. 2024 Jul;20(4):439-449. doi: 10.3988/jcn.2023.0331.J Clin Neurol. 2024.PMID:38951977Free PMC article.
- Postsynaptic SNARE Proteins: Role in Synaptic Transmission and Plasticity.Madrigal MP, Portalés A, SanJuan MP, Jurado S.Madrigal MP, et al.Neuroscience. 2019 Nov 10;420:12-21. doi: 10.1016/j.neuroscience.2018.11.012. Epub 2018 Nov 17.Neuroscience. 2019.PMID:30458218Free PMC article.Review.
References
- Ji J., Tsuk S., Salapatek A. M., Huang X., Chikvashvili D., Pasyk E. A., Kang Y., Sheu L., Tsushima R., Diamant N., Trimble W. S., Lotan I., Gaisano H. Y. (2002) J. Biol. Chem. 277, 20195–20204 - PubMed
- Fan H. P., Fan F. J., Bao L., Pei G. (2006) J. Biol. Chem. 281, 28174–28184 - PubMed
- Selak S., Paternain A. V., Aller M. I., Aller I. M., Picó E., Rivera R., Lerma J. (2009) Neuron 63, 357–371 - PubMed
- Catterall W. A., Few A. P. (2008) Neuron 59, 882–901 - PubMed