Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases
- PMID:20519516
- PMCID: PMC2915699
- DOI: 10.1074/jbc.M110.119289
Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases
Abstract
SNAP25 plays an essential role in neuronal exocytosis pathways. SNAP25a and SNAP25b are alternatively spliced isoforms differing by only nine amino acids, three of which occur within the palmitoylated cysteine-rich domain. SNAP23 is 60% identical to SNAP25 and has a distinct cysteine-rich domain to both SNAP25a and SNAP25b. Despite the conspicuous differences within the palmitoylated domains of these secretory proteins, there is no information on their comparative interactions with palmitoyl transferases. We report that membrane association of all SNAP25/23 proteins is enhanced by Golgi-localized DHHC3, DHHC7, and DHHC17. In contrast, DHHC15 promoted a statistically significant increase in membrane association of only SNAP25b. To investigate the underlying cause of this differential specificity, we examined a SNAP23 point mutant (C79F) designed to mimic the cysteine-rich domain of SNAP25b. DHHC15 promoted a marked increase in membrane binding and palmitoylation of this SNAP23 mutant, demonstrating that the distinct cysteine-rich domains of SNAP25/23 contribute to differential interactions with DHHC15. The lack of activity of DHHC15 toward wild-type SNAP23 was not overcome by replacing its DHHC domain with that from DHHC3, suggesting that substrate specificity is not determined by the DHHC domain alone. Interestingly, DHHC2, which is closely related to DHHC15, associates with the plasma membrane in PC12 cells and can palmitoylate all SNAP25 isoforms. DHHC2 is, thus, a candidate enzyme to regulate SNAP25/23 palmitoylation dynamics at the plasma membrane. Finally, we demonstrate that overexpression of specific Golgi-localized DHHC proteins active against SNAP25/23 proteins perturbs the normal secretion of human growth hormone from PC12 cells.
Figures









Similar articles
- The hydrophobic cysteine-rich domain of SNAP25 couples with downstream residues to mediate membrane interactions and recognition by DHHC palmitoyl transferases.Greaves J, Prescott GR, Fukata Y, Fukata M, Salaun C, Chamberlain LH.Greaves J, et al.Mol Biol Cell. 2009 Mar;20(6):1845-54. doi: 10.1091/mbc.e08-09-0944. Epub 2009 Jan 21.Mol Biol Cell. 2009.PMID:19158383Free PMC article.
- Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells.Salaün C, Gould GW, Chamberlain LH.Salaün C, et al.J Biol Chem. 2005 May 20;280(20):19449-53. doi: 10.1074/jbc.M501923200. Epub 2005 Mar 15.J Biol Chem. 2005.PMID:15769746Free PMC article.
- Palmitoylation and membrane interactions of the neuroprotective chaperone cysteine-string protein.Greaves J, Salaun C, Fukata Y, Fukata M, Chamberlain LH.Greaves J, et al.J Biol Chem. 2008 Sep 5;283(36):25014-26. doi: 10.1074/jbc.M802140200. Epub 2008 Jul 2.J Biol Chem. 2008.PMID:18596047Free PMC article.
- Protein Palmitoylation by DHHC Protein Family.Fukata Y, Bredt DS, Fukata M.Fukata Y, et al.In: Kittler JT, Moss SJ, editors. The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology. Boca Raton (FL): CRC Press/Taylor & Francis; 2006. Chapter 5.In: Kittler JT, Moss SJ, editors. The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology. Boca Raton (FL): CRC Press/Taylor & Francis; 2006. Chapter 5.PMID:21204476Free Books & Documents.Review.
- DHHC palmitoyl transferases: substrate interactions and (patho)physiology.Greaves J, Chamberlain LH.Greaves J, et al.Trends Biochem Sci. 2011 May;36(5):245-53. doi: 10.1016/j.tibs.2011.01.003. Epub 2011 Mar 8.Trends Biochem Sci. 2011.PMID:21388813Review.
Cited by
- Differential palmitoylation regulates intracellular patterning of SNAP25.Greaves J, Chamberlain LH.Greaves J, et al.J Cell Sci. 2011 Apr 15;124(Pt 8):1351-60. doi: 10.1242/jcs.079095. Epub 2011 Mar 23.J Cell Sci. 2011.PMID:21429935Free PMC article.
- Global, site-specific analysis of neuronal protein S-acylation.Collins MO, Woodley KT, Choudhary JS.Collins MO, et al.Sci Rep. 2017 Jul 5;7(1):4683. doi: 10.1038/s41598-017-04580-1.Sci Rep. 2017.PMID:28680068Free PMC article.
- Palmitoylation of A-kinase anchoring protein 79/150 regulates dendritic endosomal targeting and synaptic plasticity mechanisms.Keith DJ, Sanderson JL, Gibson ES, Woolfrey KM, Robertson HR, Olszewski K, Kang R, El-Husseini A, Dell'acqua ML.Keith DJ, et al.J Neurosci. 2012 May 23;32(21):7119-36. doi: 10.1523/JNEUROSCI.0784-12.2012.J Neurosci. 2012.PMID:22623657Free PMC article.
- Identification of key features required for efficient S-acylation and plasma membrane targeting of sprouty-2.Locatelli C, Lemonidis K, Salaun C, Tomkinson NCO, Chamberlain LH.Locatelli C, et al.J Cell Sci. 2020 Nov 5;133(21):jcs249664. doi: 10.1242/jcs.249664.J Cell Sci. 2020.PMID:33037124Free PMC article.
- Regional and developmental brain expression patterns of SNAP25 splice variants.Prescott GR, Chamberlain LH.Prescott GR, et al.BMC Neurosci. 2011 Apr 28;12:35. doi: 10.1186/1471-2202-12-35.BMC Neurosci. 2011.PMID:21526988Free PMC article.
References
- Jahn R., Scheller R. H. (2006) Nat. Rev. Mol. Cell Biol. 7, 631–643 - PubMed
- Lawrence G. W., Weller U., Dolly J. O. (1994) Eur. J. Biochem. 222, 325–333 - PubMed
- Bark I. C., Wilson M. C. (1994) Gene 139, 291–292 - PubMed
- Sørensen J. B., Nagy G., Varoqueaux F., Nehring R. B., Brose N., Wilson M. C., Neher E. (2003) Cell 114, 75–86 - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources