Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

American Chemical Society full text link American Chemical Society
Full text links

Actions

Share

.2010 Apr 7;132(13):4526-7.
doi: 10.1021/ja910795a.

Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting

Affiliations

Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting

Bijan Zakeri et al. J Am Chem Soc..

Abstract

Peptides and synthetic peptide-like molecules are powerful tools for analysis and control of biological function. One major limitation of peptides is the instability of their interactions with biomolecules, because of the limited accessible surface area for noncovalent interactions and the intrinsic flexibility of peptides. Peptide tags are nonetheless fundamental for protein detection and purification, because their small size minimizes the perturbation to protein function. Here we have designed a 16 amino acid peptide that spontaneously forms an amide bond to a protein partner, via reaction between lysine and asparagine side chains. This depended upon splitting a pilin subunit from a human pathogen, Streptococcus pyogenes, which usually undergoes intramolecular amide bond formation to impart mechanical and proteolytic stability to pili. Reaction of the protein partner was able to proceed to 98% conversion. The amide bond formation was independent of redox state and occurred at pH 5-8. The reaction was efficient in phosphate buffered saline and a wide range of biological buffers. Surprisingly, amide bond formation occurred at a similar rate at 4 and 37 degrees C. Both peptide and protein partners are composed of the regular 20 amino acids and reconstituted efficiently inside living E. coli. Labeling also showed high specificity on the surface of mammalian cells. Irreversible targeting of a peptide tag may have application in bioassembly, in cellular imaging, and to lock together proteins subject to high biological forces.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
American Chemical Society full text link American Chemical Society
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp