Mitochondrial fatty acid synthesis and respiration
- PMID:20226757
- DOI: 10.1016/j.bbabio.2010.03.006
Mitochondrial fatty acid synthesis and respiration
Abstract
Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.
Copyright © 2010 Elsevier B.V. All rights reserved.
Similar articles
- Mitochondrial fatty acid synthesis--an adopted set of enzymes making a pathway of major importance for the cellular metabolism.Hiltunen JK, Chen Z, Haapalainen AM, Wierenga RK, Kastaniotis AJ.Hiltunen JK, et al.Prog Lipid Res. 2010 Jan;49(1):27-45. doi: 10.1016/j.plipres.2009.08.001. Epub 2009 Aug 15.Prog Lipid Res. 2010.PMID:19686777Review.
- Mitochondrial fatty acid synthesis type II: more than just fatty acids.Hiltunen JK, Schonauer MS, Autio KJ, Mittelmeier TM, Kastaniotis AJ, Dieckmann CL.Hiltunen JK, et al.J Biol Chem. 2009 Apr 3;284(14):9011-5. doi: 10.1074/jbc.R800068200. Epub 2008 Nov 21.J Biol Chem. 2009.PMID:19028688Free PMC article.Review.
- Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria.Schonauer MS, Kastaniotis AJ, Hiltunen JK, Dieckmann CL.Schonauer MS, et al.Mol Cell Biol. 2008 Nov;28(21):6646-57. doi: 10.1128/MCB.01162-08. Epub 2008 Sep 8.Mol Cell Biol. 2008.PMID:18779316Free PMC article.
- Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae.Gurvitz A, Hiltunen JK, Kastaniotis AJ.Gurvitz A, et al.Appl Environ Microbiol. 2008 Aug;74(16):5078-85. doi: 10.1128/AEM.00655-08. Epub 2008 Jun 13.Appl Environ Microbiol. 2008.PMID:18552191Free PMC article.
- Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology.Kastaniotis AJ, Autio KJ, Kerätär JM, Monteuuis G, Mäkelä AM, Nair RR, Pietikäinen LP, Shvetsova A, Chen Z, Hiltunen JK.Kastaniotis AJ, et al.Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan;1862(1):39-48. doi: 10.1016/j.bbalip.2016.08.011. Epub 2016 Aug 21.Biochim Biophys Acta Mol Cell Biol Lipids. 2017.PMID:27553474Review.
Cited by
- Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism.Tucci S, Alatibi KI, Wehbe Z.Tucci S, et al.Int J Mol Sci. 2021 Apr 6;22(7):3799. doi: 10.3390/ijms22073799.Int J Mol Sci. 2021.PMID:33917608Free PMC article.Review.
- 4'-Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN.Jeong SY, Hogarth P, Placzek A, Gregory AM, Fox R, Zhen D, Hamada J, van der Zwaag M, Lambrechts R, Jin H, Nilsen A, Cobb J, Pham T, Gray N, Ralle M, Duffy M, Schwanemann L, Rai P, Freed A, Wakeman K, Woltjer RL, Sibon OC, Hayflick SJ.Jeong SY, et al.EMBO Mol Med. 2019 Dec;11(12):e10489. doi: 10.15252/emmm.201910489. Epub 2019 Oct 29.EMBO Mol Med. 2019.PMID:31660701Free PMC article.
- Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae.Onyango AN.Onyango AN.Heliyon. 2022 Dec 15;8(12):e12294. doi: 10.1016/j.heliyon.2022.e12294. eCollection 2022 Dec.Heliyon. 2022.PMID:36582692Free PMC article.Review.
- The Impact of SLC2A8 RNA Interference on Glucose Uptake and the Transcriptome of Human Trophoblast Cells.Lipka A, Paukszto Ł, Kennedy VC, Tanner AR, Majewska M, Anthony RV.Lipka A, et al.Cells. 2024 Feb 24;13(5):391. doi: 10.3390/cells13050391.Cells. 2024.PMID:38474355Free PMC article.
- MECR Mutations Cause Childhood-Onset Dystonia and Optic Atrophy, a Mitochondrial Fatty Acid Synthesis Disorder.Heimer G, Kerätär JM, Riley LG, Balasubramaniam S, Eyal E, Pietikäinen LP, Hiltunen JK, Marek-Yagel D, Hamada J, Gregory A, Rogers C, Hogarth P, Nance MA, Shalva N, Veber A, Tzadok M, Nissenkorn A, Tonduti D, Renaldo F; University of Washington Center for Mendelian Genomics; Kraoua I, Panteghini C, Valletta L, Garavaglia B, Cowley MJ, Gayevskiy V, Roscioli T, Silberstein JM, Hoffmann C, Raas-Rothschild A, Tiranti V, Anikster Y, Christodoulou J, Kastaniotis AJ, Ben-Zeev B, Hayflick SJ.Heimer G, et al.Am J Hum Genet. 2016 Dec 1;99(6):1229-1244. doi: 10.1016/j.ajhg.2016.09.021. Epub 2016 Nov 3.Am J Hum Genet. 2016.PMID:27817865Free PMC article.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous