Bidirectional modulation of isoflurane potency by intrathecal tetrodotoxin and veratridine in rats
- PMID:20105175
- PMCID: PMC2829212
- DOI: 10.1111/j.1476-5381.2009.00583.x
Bidirectional modulation of isoflurane potency by intrathecal tetrodotoxin and veratridine in rats
Abstract
Background and purpose: Results from several studies point to voltage-gated Na(+) channels as potential mediators of the immobility produced by inhaled anaesthetics. We hypothesized that the intrathecal administration of tetrodotoxin, a drug that blocks Na(+) channels, should enhance anaesthetic potency, and that concurrent administration of veratridine, a drug that augments Na(+) channel opening, should reverse the increase in potency.
Experimental approach: We measured the change in isoflurane potency for reducing movement in response to a painful stimulus as defined by MAC (minimum alveolar concentration of anaesthetic required to abolish movement in 50% of subjects) caused by intrathecal infusion of various concentrations of tetrodotoxin into the lumbothoracic subarachnoid space of rats, and the change in MAC caused by the administration of a fixed dose of tetrodotoxin plus various doses of intrathecal veratridine.
Key results: Intrathecal infusion of tetrodotoxin (0.078-0.63 microM) produced a reversible dose-related decrease in MAC, of more than 50% at the highest concentration. Intrathecal co-administration of veratridine (1.6-6.4 microM) reversed this decrease in a dose-related manner, with nearly complete reversal at the highest veratridine dose tested.
Conclusions and implications: Intrathecal administration of tetrodotoxin increases isoflurane potency (decreases isoflurane MAC), and intrathecal administration of veratridine counteracts this effect in vivo. These findings are consistent with a role for voltage-gated Na(+) channel blockade in the immobility produced by inhaled anaesthetics.
Figures



Similar articles
- Intrathecal veratridine administration increases minimum alveolar concentration in rats.Zhang Y, Sharma M, Eger EI 2nd, Laster MJ, Hemmings HC Jr, Harris RA.Zhang Y, et al.Anesth Analg. 2008 Sep;107(3):875-8. doi: 10.1213/ane.0b013e3181815fbc.Anesth Analg. 2008.PMID:18713899Free PMC article.
- Alterations in spinal, but not cerebral, cerebrospinal fluid Na+ concentrations affect the isoflurane minimum alveolar concentration in rats.Laster MJ, Zhang Y, Eger EI 2nd, Shnayderman D, Sonner JM.Laster MJ, et al.Anesth Analg. 2007 Sep;105(3):661-5. doi: 10.1213/01.ane.0000278090.88402.26.Anesth Analg. 2007.PMID:17717220
- Intrathecal co-administration of NMDA antagonist and NK-1 antagonist reduces MAC of isoflurane in rats.Ishizaki K, Sasaki M, Karasawa S, Obata H, Nara T, Goto F.Ishizaki K, et al.Acta Anaesthesiol Scand. 1999 Aug;43(7):753-9. doi: 10.1034/j.1399-6576.1999.430711.x.Acta Anaesthesiol Scand. 1999.PMID:10456816
- Increases in spinal cerebrospinal fluid potassium concentration do not increase isoflurane minimum alveolar concentration in rats.Shnayderman D, Laster MJ, Eger EI 2nd, Oh I, Zhang Y, Jinks SL, Antognini JF, Raines DE.Shnayderman D, et al.Anesth Analg. 2008 Sep;107(3):879-84. doi: 10.1213/ane.0b013e3181815f2b.Anesth Analg. 2008.PMID:18713900Free PMC article.
- Isoflurane inhibits the tetrodotoxin-resistant voltage-gated sodium channel Nav1.8.Herold KF, Nau C, Ouyang W, Hemmings HC Jr.Herold KF, et al.Anesthesiology. 2009 Sep;111(3):591-9. doi: 10.1097/ALN.0b013e3181af64d4.Anesthesiology. 2009.PMID:19672182Free PMC article.
Cited by
- Sodium channels as targets for volatile anesthetics.Herold KF, Hemmings HC Jr.Herold KF, et al.Front Pharmacol. 2012 Mar 30;3:50. doi: 10.3389/fphar.2012.00050. eCollection 2012.Front Pharmacol. 2012.PMID:22479247Free PMC article.
- Tetrodotoxin (TTX) as a therapeutic agent for pain.Nieto FR, Cobos EJ, Tejada MÁ, Sánchez-Fernández C, González-Cano R, Cendán CM.Nieto FR, et al.Mar Drugs. 2012 Feb;10(2):281-305. doi: 10.3390/md10020281. Epub 2012 Jan 31.Mar Drugs. 2012.PMID:22412801Free PMC article.Review.
- Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties.Herold KF, Sanford RL, Lee W, Schultz MF, Ingólfsson HI, Andersen OS, Hemmings HC Jr.Herold KF, et al.J Gen Physiol. 2014 Dec;144(6):545-60. doi: 10.1085/jgp.201411172. Epub 2014 Nov 10.J Gen Physiol. 2014.PMID:25385786Free PMC article.
- Effects of General Anesthetics on Synaptic Transmission and Plasticity.Platholi J, Hemmings HC.Platholi J, et al.Curr Neuropharmacol. 2022;20(1):27-54. doi: 10.2174/1570159X19666210803105232.Curr Neuropharmacol. 2022.PMID:34344292Free PMC article.Review.
- Pain transduction: a pharmacologic perspective.McEntire DM, Kirkpatrick DR, Dueck NP, Kerfeld MJ, Smith TA, Nelson TJ, Reisbig MD, Agrawal DK.McEntire DM, et al.Expert Rev Clin Pharmacol. 2016 Aug;9(8):1069-80. doi: 10.1080/17512433.2016.1183481. Epub 2016 May 23.Expert Rev Clin Pharmacol. 2016.PMID:27137678Free PMC article.Review.
References
- Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology. 1993;79:1244–1249. - PubMed
- Banasiak KJ, Burenkova O, Haddad GG. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience. 2004;126:31–44. - PubMed
- Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Voltage-gated ion channels and gating modifier toxins. Toxicon. 2007;49:124–141. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources