Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting
- PMID:20080571
- PMCID: PMC2872374
- DOI: 10.1073/pnas.0908905107
Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting
Abstract
Oceans cover over two-thirds of the Earth's surface, and the particles emitted to the atmosphere by waves breaking on sea surfaces provide an important contribution to the planetary albedo. During the International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT) cruise on the R/V Knorr in March and April of 2008, organic mass accounted for 15-47% of the submicron particle mass in the air masses sampled over the North Atlantic and Arctic Oceans. A majority of this organic component (0.1-0.4 microm(-3)) consisted of organic hydroxyl (including polyol and other alcohol) groups characteristic of saccharides, similar to biogenic carbohydrates found in seawater. The large fraction of organic hydroxyl groups measured during ICEALOT in submicron atmospheric aerosol exceeded those measured in most previous campaigns but were similar to particles in marine air masses in the open ocean (Southeast Pacific Ocean) and coastal sites at northern Alaska (Barrow) and northeastern North America (Appledore Island and Chebogue Point). The ocean-derived organic hydroxyl mass concentration during ICEALOT correlated strongly to submicron Na concentration and wind speed. The observed submicron particle ratios of marine organic mass to Na were enriched by factors of approximately 10(2)-approximately 10(3) over reported sea surface organic to Na ratios, suggesting that the surface-controlled process of film bursting is influenced by the dissolved organic components present in the sea surface microlayer. Both marine organic components and Na increased with increasing number mean diameter of the accumulation mode, suggesting a possible link between organic components in the ocean surface and aerosol-cloud interactions.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
- A marine biogenic source of atmospheric ice-nucleating particles.Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM, Browse J, Burrows SM, Carslaw KS, Huffman JA, Judd C, Kilthau WP, Mason RH, McFiggans G, Miller LA, Nájera JJ, Polishchuk E, Rae S, Schiller CL, Si M, Temprado JV, Whale TF, Wong JP, Wurl O, Yakobi-Hancock JD, Abbatt JP, Aller JY, Bertram AK, Knopf DA, Murray BJ.Wilson TW, et al.Nature. 2015 Sep 10;525(7568):234-8. doi: 10.1038/nature14986.Nature. 2015.PMID:26354482
- Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.Russell LM, Bahadur R, Ziemann PJ.Russell LM, et al.Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3516-21. doi: 10.1073/pnas.1006461108. Epub 2011 Feb 11.Proc Natl Acad Sci U S A. 2011.PMID:21317360Free PMC article.
- Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic.Altieri KE, Fawcett SE, Peters AJ, Sigman DM, Hastings MG.Altieri KE, et al.Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):925-30. doi: 10.1073/pnas.1516847113. Epub 2016 Jan 6.Proc Natl Acad Sci U S A. 2016.PMID:26739561Free PMC article.
- Sea-surface chemistry and its impact on the marine boundary layer.Donaldson DJ, George C.Donaldson DJ, et al.Environ Sci Technol. 2012 Oct 2;46(19):10385-9. doi: 10.1021/es301651m. Epub 2012 Jul 9.Environ Sci Technol. 2012.PMID:22724587Review.
- Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.Fu H, Zheng M, Yan C, Li X, Gao H, Yao X, Guo Z, Zhang Y.Fu H, et al.J Environ Sci (China). 2015 Mar 1;29:62-70. doi: 10.1016/j.jes.2014.09.031. Epub 2015 Jan 30.J Environ Sci (China). 2015.PMID:25766014Review.
Cited by
- NewBurst-Oscillation Mode in Paced One-Dimensional Excitable Systems.Lei Z, Liu J, Zhao Y, Liu F, Qian Y, Zheng Z.Lei Z, et al.Front Physiol. 2022 Mar 23;13:854887. doi: 10.3389/fphys.2022.854887. eCollection 2022.Front Physiol. 2022.PMID:35399268Free PMC article.
- Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic.Saliba G, Chen CL, Lewis S, Russell LM, Rivellini LH, Lee AKY, Quinn PK, Bates TS, Haëntjens N, Boss ES, Karp-Boss L, Baetge N, Carlson CA, Behrenfeld MJ.Saliba G, et al.Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20309-20314. doi: 10.1073/pnas.1907574116. Epub 2019 Sep 23.Proc Natl Acad Sci U S A. 2019.PMID:31548411Free PMC article.
- Enrichment of Surface-Active Compounds in Bursting Bubble Aerosols.Chingin K, Yan R, Zhong D, Chen H.Chingin K, et al.ACS Omega. 2018 Aug 7;3(8):8709-8717. doi: 10.1021/acsomega.8b01157. eCollection 2018 Aug 31.ACS Omega. 2018.PMID:31459002Free PMC article.
- Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead.Sorooshian A, Corral AF, Braun RA, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb MM, Mardi AH, Maring H, McComiskey A, Moore R, Painemal D, Jo Scarino A, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L, Zuidema P.Sorooshian A, et al.J Geophys Res Atmos. 2020 Mar 27;125(6):10.1029/2019jd031626. doi: 10.1029/2019jd031626. Epub 2020 Feb 18.J Geophys Res Atmos. 2020.PMID:32699733Free PMC article.
- Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols.Moschos V, Dzepina K, Bhattu D, Lamkaddam H, Casotto R, Daellenbach KR, Canonaco F, Rai P, Aas W, Becagli S, Calzolai G, Eleftheriadis K, Moffett CE, Schnelle-Kreis J, Severi M, Sharma S, Skov H, Vestenius M, Zhang W, Hakola H, Hellén H, Huang L, Jaffrezo JL, Massling A, Nøjgaard JK, Petäjä T, Popovicheva O, Sheesley RJ, Traversi R, Yttri KE, Schmale J, Prévôt ASH, Baltensperger U, El Haddad I.Moschos V, et al.Nat Geosci. 2022;15(3):196-202. doi: 10.1038/s41561-021-00891-1. Epub 2022 Feb 28.Nat Geosci. 2022.PMID:35341076Free PMC article.
References
- Haywood JM, Roberts DL, Slingo A, Edwards JM, Shine KP. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J Climate. 1997;10(7):1562–1577.
- Clarke AD, Owens SR, Zhou JC. An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J Geophys Res. 2006;111(D6)10.1029/2005JD006565. - DOI
- Spracklen DV, Arnold SR, Sciare J, Carslaw KS, Pio C. Globally significant oceanic source of organic carbon aerosol. Geophys Res Lett. 2008;35(L12811)10.1029/2008GL033359. - DOI
- Randles CA, Russell LM, Ramaswamy V. Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. Geophys Res Lett. 2004;31(L16108)10.1029/2004GL020628. - DOI
- Ming Y, Russell LM. Predicted hygroscopic growth of sea salt aerosol. J Geophys Res. 2001;106(D22):28259–28274.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Miscellaneous