Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa
- PMID:19952284
- PMCID: PMC2845431
- DOI: 10.1096/fj.09-139147
Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa
Abstract
The purpose of the present study was to test the therapeutic efficiency and safety of compacted-DNA nanoparticle-mediated gene delivery into the subretinal space of a juvenile mouse model of retinitis pigmentosa. Nanoparticles containing the mouse opsin promoter and wild-type mouse Rds gene were injected subretinally into mice carrying a haploinsufficiency mutation in the retinal degeneration slow (rds(+ or -)) gene at postnatal day (P)5 and 22. Control mice were either injected with saline, injected with uncompacted naked plasmid DNA carrying the Rds gene, or remained untreated. Rds mRNA levels peaked at postinjection day 2 to 7 (PI-2 to PI-7) for P5 injections, stabilized at levels 2-fold higher than in uninjected controls for both P5 and P22 injections, and remained elevated at the latest time point examined (PI-120). Rod function (measured by electroretinography) showed modest but statistically significant improvement compared with controls after both P5 and P22 injections. Cone function in nanoparticle-injected eyes reached wild-type levels for both ages of injections, indicating full prevention of cone degeneration. Ultrastructural examination at PI-120 revealed significant improvement in outer segment structures in P5 nanoparticle-injected eyes, while P22 injection had a modest structural improvement. There was no evidence of macrophage activation or induction of IL-6 or TNF-alpha mRNA in P5 or P22 nanoparticle-dosed eyes at either PI-2 or PI-30. Thus, compacted-DNA nanoparticles can efficiently and safely drive gene expression in both mitotic and postmitotic photoreceptors and retard degeneration in this model. These findings, using a clinically relevant treatment paradigm, illustrate the potential for application of nanoparticle-based gene replacement therapy for treatment of human retinal degenerations.-Cai, X., Conley, S. M., Nash, Z., Fliesler, S. J., Cooper, M. J., Naash, M. I. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa.
Figures








Similar articles
- A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles.Cai X, Nash Z, Conley SM, Fliesler SJ, Cooper MJ, Naash MI.Cai X, et al.PLoS One. 2009;4(4):e5290. doi: 10.1371/journal.pone.0005290. Epub 2009 Apr 24.PLoS One. 2009.PMID:19390689Free PMC article.
- Generation and analysis of transgenic mice expressing P216L-substituted rds/peripherin in rod photoreceptors.Kedzierski W, Lloyd M, Birch DG, Bok D, Travis GH.Kedzierski W, et al.Invest Ophthalmol Vis Sci. 1997 Feb;38(2):498-509.Invest Ophthalmol Vis Sci. 1997.PMID:9040483
- Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy.Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, Munro PM, Fauser S, Reichel MB, Kinnon C, Hunt DM, Bhattacharya SS, Thrasher AJ.Ali RR, et al.Nat Genet. 2000 Jul;25(3):306-10. doi: 10.1038/77068.Nat Genet. 2000.PMID:10888879
- Gene therapy in the Retinal Degeneration Slow model of retinitis pigmentosa.Cai X, Conley SM, Naash MI.Cai X, et al.Adv Exp Med Biol. 2010;664:611-9. doi: 10.1007/978-1-4419-1399-9_70.Adv Exp Med Biol. 2010.PMID:20238065Free PMC article.Review.
- [A molecular biological study on retinitis pigmentosa].Nakazawa M.Nakazawa M.Nippon Ganka Gakkai Zasshi. 1993 Dec;97(12):1394-405.Nippon Ganka Gakkai Zasshi. 1993.PMID:7904791Review.Japanese.
Cited by
- Ocular Drug Delivery: Advancements and Innovations.Tian B, Bilsbury E, Doherty S, Teebagy S, Wood E, Su W, Gao G, Lin H.Tian B, et al.Pharmaceutics. 2022 Sep 13;14(9):1931. doi: 10.3390/pharmaceutics14091931.Pharmaceutics. 2022.PMID:36145679Free PMC article.Review.
- Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases.Bravo-Osuna I, Andrés-Guerrero V, Pastoriza Abal P, Molina-Martínez IT, Herrero-Vanrell R.Bravo-Osuna I, et al.Drug Deliv Transl Res. 2016 Dec;6(6):686-707. doi: 10.1007/s13346-016-0336-5.Drug Deliv Transl Res. 2016.PMID:27766598Review.
- Defects in the outer limiting membrane are associated with rosette development in the Nrl-/- retina.Stuck MW, Conley SM, Naash MI.Stuck MW, et al.PLoS One. 2012;7(3):e32484. doi: 10.1371/journal.pone.0032484. Epub 2012 Mar 12.PLoS One. 2012.PMID:22427845Free PMC article.
- POD nanoparticles expressing GDNF provide structural and functional rescue of light-induced retinal degeneration in an adult mouse.Read SP, Cashman SM, Kumar-Singh R.Read SP, et al.Mol Ther. 2010 Nov;18(11):1917-26. doi: 10.1038/mt.2010.167. Epub 2010 Aug 10.Mol Ther. 2010.PMID:20700110Free PMC article.
- Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa.Diakatou M, Manes G, Bocquet B, Meunier I, Kalatzis V.Diakatou M, et al.Int J Mol Sci. 2019 May 23;20(10):2542. doi: 10.3390/ijms20102542.Int J Mol Sci. 2019.PMID:31126147Free PMC article.Review.
References
- Weleber R. Phenotypic variation in patients with mutation in the peripherin/RDS gene. [Online] Digit J Opthalmol. 1999;5(2)
- Travis G H, Sutcliffe J G, Bok D. The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Neuron. 1991;6:61–70. - PubMed
- Keen T J, Inglehearn C F. Mutations and polymorphisms in the human peripherin-RDS gene and their involvement in inherited retinal degeneration. Hum Mutat. 1996;8:297–303. - PubMed
- Kohl S, Giddings I, Besch D, Apfelstedt-Sylla E, Zrenner E, Wissinger B. The role of the peripherin/RDS gene in retinal dystrophies. Acta Anat. 1998;162:75–84. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous