Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock
- PMID:19948962
- PMCID: PMC2795500
- DOI: 10.1073/pnas.0906651106
Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock
Abstract
Circadian rhythms in mammals are generated by a negative transcriptional feedback loop in which PERIOD (PER) is rate-limiting for feedback inhibition. Casein kinases Idelta and Iepsilon (CKIdelta/epsilon) can regulate temporal abundance/activity of PER by phosphorylation-mediated degradation and cellular localization. Despite their potentially crucial effects on PER, it has not been demonstrated in a mammalian system that these kinases play essential roles in circadian rhythm generation as does their homolog in Drosophila. To disrupt both CKIdelta/epsilon while avoiding the embryonic lethality of CKIdelta disruption in mice, we used CKIdelta-deficient Per2(Luc) mouse embryonic fibroblasts (MEFs) and overexpressed a dominant-negative mutant CKIepsilon (DN-CKIepsilon) in the mutant MEFs. CKIdelta-deficient MEFs exhibited a robust circadian rhythm, albeit with a longer period, suggesting that the cells possess a way to compensate for CKIdelta loss. When CKIepsilon activity was disrupted by the DN-CKIepsilon in the mutant MEFs, circadian bioluminescence rhythms were eliminated and rhythms in endogenous PER abundance and phosphorylation were severely compromised, demonstrating that CKIdelta/epsilon are indeed essential kinases for the clockwork. This is further supported by abolition of circadian rhythms when physical interaction between PER and CKIdelta/epsilon was disrupted by overexpressing the CKIdelta/epsilon binding domain of PER2 (CKBD-P2). Interestingly, CKBD-P2 overexpression led to dramatically low levels of endogenous PER, while PER-binding, kinase-inactive DN-CKIepsilon did not, suggesting that CKIdelta/epsilon may have a non-catalytic role in stabilizing PER. Our results show that an essential role of CKIdelta/epsilon is conserved between Drosophila and mammals, but CKIdelta/epsilon and DBT may have divergent non-catalytic functions in the clockwork as well.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





References
- Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature. 2002;417:329–335. - PubMed
- Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–941. - PubMed
- Hastings MH, Reddy AB, Maywood ES. A clockwork web: Circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003;4:649–661. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
