The evolution of gnathostome development: Insight from chondrichthyan embryology
- PMID:19882670
- DOI: 10.1002/dvg.20567
The evolution of gnathostome development: Insight from chondrichthyan embryology
Abstract
Chondrichthyans (cartilaginous fishes) represent one of the two lineages of gnathostomes, the other being the osteicthyans (bony fishes). Classical studies on chondrichthyan embryology have strongly impacted our views of vertebrate body plan evolution, while recent studies highlight oviparous chondrichthyans as emerging vertebrate model systems that are amenable to experimental embryological manipulation. Here, we review three particular areas of interest in the field of chondrichthyan developmental biology-gastrulation, neural development, and appendage patterning-and we discuss recent findings within a broader chondrichthyan-osteichthyan comparative framework. In some cases, comparative studies of chondrichthyan and osteichthyan development reveal conserved patterns of gene expression in common developmental contexts. Studies of chondrichthyan gastrulation reveal conserved patterns of developmental gene expression, despite highly divergent modes of mesendoderm internalization, while molecular characterization of chondrichthyan neurogenic placodes indicates a conservation of placode transcription factor expression across gnathostome phylogeny. In other cases, comparative studies of chondrichthyan and osteichthyan development yield evidence of shared patterning mechanisms functioning in different developmental contexts. This is exemplified by studies on the development of chondrichthyan appendages-paired fins, median fins, and gill rays. These have demonstrated that a retinoic acid-responsive Shh-expressing signaling center functions to pattern the endoskeleton of gnathostome paired fins and chondrichthyan gill rays, while expression patterns of Tbx18 and HoxD family members are shared by gnathostome paired fins and chondrichthyan median fins. These findings fuel novel hypotheses of developmental genetic homology, and demonstrate how comparative studies of gnathostome development can provide insight into the evolutionary processes that underlie morphological diversity.
(c) 2009 Wiley-Liss, Inc.
Similar articles
- Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning.Dahn RD, Davis MC, Pappano WN, Shubin NH.Dahn RD, et al.Nature. 2007 Jan 18;445(7125):311-4. doi: 10.1038/nature05436. Epub 2006 Dec 24.Nature. 2007.PMID:17187056
- Insights from sharks: evolutionary and developmental models of fin development.Cole NJ, Currie PD.Cole NJ, et al.Dev Dyn. 2007 Sep;236(9):2421-31. doi: 10.1002/dvdy.21268.Dev Dyn. 2007.PMID:17676641Review.
- Evidence that mechanisms of fin development evolved in the midline of early vertebrates.Freitas R, Zhang G, Cohn MJ.Freitas R, et al.Nature. 2006 Aug 31;442(7106):1033-7. doi: 10.1038/nature04984. Epub 2006 Jul 26.Nature. 2006.PMID:16878142
- Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck.Kuratani S.Kuratani S.Dev Growth Differ. 2008 Jun;50 Suppl 1:S189-94. doi: 10.1111/j.1440-169X.2008.00985.x. Epub 2008 Apr 22.Dev Growth Differ. 2008.PMID:18430164Review.
- Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages.Ahn D, Ho RK.Ahn D, et al.Dev Biol. 2008 Oct 1;322(1):220-33. doi: 10.1016/j.ydbio.2008.06.032. Epub 2008 Jul 3.Dev Biol. 2008.PMID:18638469
Cited by
- New Species Can Broaden Myelin Research: Suitability of Little Skate,Leucoraja erinacea.Möbius W, Hümmert S, Ruhwedel T, Kuzirian A, Gould R.Möbius W, et al.Life (Basel). 2021 Feb 11;11(2):136. doi: 10.3390/life11020136.Life (Basel). 2021.PMID:33670172Free PMC article.
- Study of the glial cytoarchitecture of the developing olfactory bulb of a shark using immunochemical markers of radial glia.Docampo-Seara A, Candal E, Rodríguez MA.Docampo-Seara A, et al.Brain Struct Funct. 2022 Apr;227(3):1067-1082. doi: 10.1007/s00429-021-02448-9. Epub 2022 Jan 7.Brain Struct Funct. 2022.PMID:34997380Free PMC article.
- The Ancient Origins of Neural Substrates for Land Walking.Jung H, Baek M, D'Elia KP, Boisvert C, Currie PD, Tay BH, Venkatesh B, Brown SM, Heguy A, Schoppik D, Dasen JS.Jung H, et al.Cell. 2018 Feb 8;172(4):667-682.e15. doi: 10.1016/j.cell.2018.01.013.Cell. 2018.PMID:29425489Free PMC article.
- The role ofHoxA11 andHoxA13 in the evolution of novel fin morphologies in a representative batoid (Leucoraja erinacea).Barry SN, Crow KD.Barry SN, et al.Evodevo. 2017 Dec 1;8:24. doi: 10.1186/s13227-017-0088-4. eCollection 2017.Evodevo. 2017.PMID:29214009Free PMC article.
- Mitral cell development in the olfactory bulb of sharks: evidences of a conserved pattern of glutamatergic neurogenesis.Docampo-Seara A, Lanoizelet M, Lagadec R, Mazan S, Candal E, Rodríguez MA.Docampo-Seara A, et al.Brain Struct Funct. 2019 Sep;224(7):2325-2341. doi: 10.1007/s00429-019-01906-9. Epub 2019 Jun 15.Brain Struct Funct. 2019.PMID:31203451Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources