Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Comparative Study
.2010 Feb;8(2):315-23.
doi: 10.1111/j.1538-7836.2009.03654.x. Epub 2009 Oct 19.

Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles

Affiliations
Free article
Comparative Study

Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles

Y Yuana et al. J Thromb Haemost.2010 Feb.
Free article

Abstract

Background: Microparticles (MPs) are small vesicles released from cells of different origin, bearing surface antigens from parental cells. Elevated numbers of blood MPs have been reported in (cardio)vascular disorders and cancer. Most of these MPs are derived from platelets.

Objectives: To investigate whether atomic force microscopy (AFM) can be used to detect platelet-derived MPs and to define their size distribution.

Methods: Blood MPs isolated from seven blood donors and three cancer patients were immobilized on a modified mica surface coated with an antibody against CD41 prior to AFM imaging. AFM was performed in liquid-tapping mode to detect CD41-positive MPs. In parallel, numbers of CD41-positive MPs were measured using flow cytometry. Mouse IgG1 isotype control was used as a negative control.

Results: AFM topography measurements of the number of CD41-positive MPs were reproducible (coefficient of variation=16%). Assuming a spherical shape of unbound MPs, the calculated diameter of CD41-positive MPs (dsph) ranged from 10 to 475 nm (mean: 67.5+/-26.5 nm) and from 5 to 204 nm (mean: 51.4+/-14.9 nm) in blood donors and cancer patients, respectively. Numbers of CD41-positive MPs were 1000-fold higher than those measured by flow cytometry (3-702x10(9) L(-1) plasma vs. 11-626x10(6) L(-1) plasma). After filtration of isolated MPs through a 0.22-microm filter, CD41-positive MPs were still detectable in the filtrate by AFM (mean dsph: 37.2+/-11.6 nm), but not by flow cytometry.

Conclusions: AFM provides a novel method for the sensitive detection of defined subsets of MPs in the nanosize range, far below the lower limit of what can be measured by conventional flow cytometry.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp