The role of retinal photoreceptors in the regulation of circadian rhythms
- PMID:19777353
- PMCID: PMC2848671
- DOI: 10.1007/s11154-009-9120-x
The role of retinal photoreceptors in the regulation of circadian rhythms
Abstract
The circadian clock is an evolutionarily, highly conserved feature of most organisms. This internal timing mechanism coordinates biochemical, physiological and behavioral processes to maintain synchrony with the environmental cycles of light, temperature and nutrients. Several studies have shown that light is the most potent cue used by most organisms (humans included) to synchronize daily activities. In mammals, light perception occurs only in the retina; three different types of photoreceptors are present within this tissue: cones, rods and the newly discovered intrinsically photosensitive retinal ganglion cells (ipRGCs). Researchers believe that the classical photoreceptors (e.g., the rods and the cones) are responsible for the image-forming vision, whereas the ipRGCs play a key role in the non-image forming vision. This non-image-forming photoreceptive system communicates not only with the master circadian pacemaker located in the suprachiasmatic nuclei of the hypothalamus, but also with many other brain areas that are known to be involved in the regulation of several functions; thus, this non-image forming system may also affect several aspects of mammalian health independently from the circadian system.
Figures

Similar articles
- Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions.Schmidt TM, Chen SK, Hattar S.Schmidt TM, et al.Trends Neurosci. 2011 Nov;34(11):572-80. doi: 10.1016/j.tins.2011.07.001. Epub 2011 Aug 3.Trends Neurosci. 2011.PMID:21816493Free PMC article.Review.
- The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration.Ruggiero L, Allen CN, Brown RL, Robinson DW.Ruggiero L, et al.Eur J Neurosci. 2009 Jan;29(2):359-67. doi: 10.1111/j.1460-9568.2008.06589.x.Eur J Neurosci. 2009.PMID:19200239Free PMC article.
- Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.Barnard AR, Appleford JM, Sekaran S, Chinthapalli K, Jenkins A, Seeliger M, Biel M, Humphries P, Douglas RH, Wenzel A, Foster RG, Hankins MW, Lucas RJ.Barnard AR, et al.Vis Neurosci. 2004 Sep-Oct;21(5):675-83. doi: 10.1017/S0952523804215024.Vis Neurosci. 2004.PMID:15683556
- Intrinsically photosensitive retinal ganglion cells.Pickard GE, Sollars PJ.Pickard GE, et al.Sci China Life Sci. 2010 Jan;53(1):58-67. doi: 10.1007/s11427-010-0024-5. Epub 2010 Feb 12.Sci China Life Sci. 2010.PMID:20596956Review.
- Circadian photoreception in vertebrates.Doyle S, Menaker M.Doyle S, et al.Cold Spring Harb Symp Quant Biol. 2007;72:499-508. doi: 10.1101/sqb.2007.72.003.Cold Spring Harb Symp Quant Biol. 2007.PMID:18419310Review.
Cited by
- Preferences of Dairy Cattle for Supplemental Light-Emitting Diode Lighting in the Resting Area.Wilson AM, Wright TC, Cant JP, Osborne VR.Wilson AM, et al.Animals (Basel). 2022 Jul 25;12(15):1894. doi: 10.3390/ani12151894.Animals (Basel). 2022.PMID:35892544Free PMC article.
- Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway.Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN.Vallée A, et al.Int J Mol Sci. 2020 Jan 27;21(3):820. doi: 10.3390/ijms21030820.Int J Mol Sci. 2020.PMID:32012797Free PMC article.Review.
- Chronobiological disruptions: unravelling the interplay of shift work, circadian rhythms, and vascular health in the context of stroke risk.Li X, He Y, Wang D, Momeni MR.Li X, et al.Clin Exp Med. 2024 Nov 14;25(1):6. doi: 10.1007/s10238-024-01514-w.Clin Exp Med. 2024.PMID:39541048Free PMC article.Review.
- Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function.Bhoi JD, Goel M, Ribelayga CP, Mangel SC.Bhoi JD, et al.Prog Retin Eye Res. 2023 May;94:101119. doi: 10.1016/j.preteyeres.2022.101119. Epub 2022 Dec 8.Prog Retin Eye Res. 2023.PMID:36503722Free PMC article.Review.
- Ocular Clocks: Adapting Mechanisms for Eye Functions and Health.Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G.Felder-Schmittbuhl MP, et al.Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):4856-4870. doi: 10.1167/iovs.18-24957.Invest Ophthalmol Vis Sci. 2018.PMID:30347082Free PMC article.Review.
References
- Daan S, Aschoff J. Circadian contribution to survival. In: Aschoff J, Daan S, Groos G, editors. Vertebrate Circadian System. Springer-Verlag; Berlin: 1982. pp. 305–21.
- Pittendrigh CS. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 1993;55:16–54. - PubMed
- Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288:682–5. - PubMed
- Yamazaki S, Goto M, Menaker M. No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J Biol Rhythms. 1999;14:197–201. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources