Gene therapy for red-green colour blindness in adult primates
- PMID:19759534
- PMCID: PMC2782927
- DOI: 10.1038/nature08401
Gene therapy for red-green colour blindness in adult primates
Abstract
Red-green colour blindness, which results from the absence of either the long- (L) or the middle- (M) wavelength-sensitive visual photopigments, is the most common single locus genetic disorder. Here we explore the possibility of curing colour blindness using gene therapy in experiments on adult monkeys that had been colour blind since birth. A third type of cone pigment was added to dichromatic retinas, providing the receptoral basis for trichromatic colour vision. This opened a new avenue to explore the requirements for establishing the neural circuits for a new dimension of colour sensation. Classic visual deprivation experiments have led to the expectation that neural connections established during development would not appropriately process an input that was not present from birth. Therefore, it was believed that the treatment of congenital vision disorders would be ineffective unless administered to the very young. However, here we show that the addition of a third opsin in adult red-green colour-deficient primates was sufficient to produce trichromatic colour vision behaviour. Thus, trichromacy can arise from a single addition of a third cone class and it does not require an early developmental process. This provides a positive outlook for the potential of gene therapy to cure adult vision disorders.
Figures



Comment in
- Vision: Gene therapy in colour.Shapley R.Shapley R.Nature. 2009 Oct 8;461(7265):737-9. doi: 10.1038/461737a.Nature. 2009.PMID:19812661No abstract available.
Similar articles
- Vision: Gene therapy in colour.Shapley R.Shapley R.Nature. 2009 Oct 8;461(7265):737-9. doi: 10.1038/461737a.Nature. 2009.PMID:19812661No abstract available.
- Curing color blindness--mice and nonhuman primates.Neitz M, Neitz J.Neitz M, et al.Cold Spring Harb Perspect Med. 2014 Aug 21;4(11):a017418. doi: 10.1101/cshperspect.a017418.Cold Spring Harb Perspect Med. 2014.PMID:25147187Free PMC article.Review.
- Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments.Mollon JD, Bowmaker JK, Jacobs GH.Mollon JD, et al.Proc R Soc Lond B Biol Sci. 1984 Sep 22;222(1228):373-99. doi: 10.1098/rspb.1984.0071.Proc R Soc Lond B Biol Sci. 1984.PMID:6149558
- A Cure for Color Blindness? Stand by Buck Rogers![No authors listed][No authors listed]Optom Vis Sci. 2015 Aug;92(8):e196.Optom Vis Sci. 2015.PMID:26421338No abstract available.
- The molecular genetics and evolution of primate colour vision.Tovee MJ.Tovee MJ.Trends Neurosci. 1994 Jan;17(1):30-7. doi: 10.1016/0166-2236(94)90032-9.Trends Neurosci. 1994.PMID:7511848Review.
Cited by
- Adenoviral and adeno-associated viral vectors-mediated neuronal gene transfer to cardiovascular control regions of the rat brain.Zhang Y, Gao Y, Speth RC, Jiang N, Mao Y, Sumners C, Li H.Zhang Y, et al.Int J Med Sci. 2013;10(5):607-16. doi: 10.7150/ijms.5700. Epub 2013 Mar 20.Int J Med Sci. 2013.PMID:23569423Free PMC article.
- Evaluation of Retinal Structure and Visual Function in Blue Cone Monochromacy to Develop Clinical Endpoints for L-opsin Gene Therapy.Cideciyan AV, Roman AJ, Warner RL, Sumaroka A, Wu V, Jiang YY, Swider M, Garafalo AV, Viarbitskaya I, Russell RC, Kohl S, Wissinger B, Ripamonti C, Barbur JL, Bach M, Carroll J, Morgan JIW, Aleman TS.Cideciyan AV, et al.Int J Mol Sci. 2024 Oct 2;25(19):10639. doi: 10.3390/ijms251910639.Int J Mol Sci. 2024.PMID:39408969Free PMC article.
- rAAV2/5 gene-targeting to rods:dose-dependent efficiency and complications associated with different promoters.Beltran WA, Boye SL, Boye SE, Chiodo VA, Lewin AS, Hauswirth WW, Aguirre GD.Beltran WA, et al.Gene Ther. 2010 Sep;17(9):1162-74. doi: 10.1038/gt.2010.56. Epub 2010 Apr 29.Gene Ther. 2010.PMID:20428215Free PMC article.
- The future of sensory substitution, addition, and expansion via haptic devices.Eagleman DM, Perrotta MV.Eagleman DM, et al.Front Hum Neurosci. 2023 Jan 13;16:1055546. doi: 10.3389/fnhum.2022.1055546. eCollection 2022.Front Hum Neurosci. 2023.PMID:36712151Free PMC article.
- Allocating structure to function: the strong links between neuroplasticity and natural selection.Anderson ML, Finlay BL.Anderson ML, et al.Front Hum Neurosci. 2014 Jan 7;7:918. doi: 10.3389/fnhum.2013.00918. eCollection 2014 Jan 7.Front Hum Neurosci. 2014.PMID:24431995Free PMC article.
References
- Wiesel TN, Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 1963;26:1003–1017. - PubMed
- Jacobs GH. A perspective on color vision in platyrrhine monkeys. Vision Res. 1998;38:3307–3313. - PubMed
- Li Q, Timmers AM, Guy J, Pang J, Hauswirth WW. Cone-specific expression using a human red opsin promoter in recombinant AAV. Vision Res. 2007;48 - PubMed
- Reffin JP, Astell S, Mollon JD. Colour Vision Deficiencies X. Kluwer Academic Publishers; Dordrecht: 1991. Trials of a computer-controlled colour vision test that preserves the advantages of pseudo-isochromatic plates; pp. 69–76.
- Regan BC, Reffin JP, Mollon JD. Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Res. 1994;34:1279–1299. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
- P30EY01931/EY/NEI NIH HHS/United States
- P30EY01730/EY/NEI NIH HHS/United States
- P30 EY001730/EY/NEI NIH HHS/United States
- R01 EY016861/EY/NEI NIH HHS/United States
- P30 EY008571/EY/NEI NIH HHS/United States
- R01EY016861/EY/NEI NIH HHS/United States
- T32EY014537/EY/NEI NIH HHS/United States
- R01 EY011123/EY/NEI NIH HHS/United States
- P51 RR000166-41/RR/NCRR NIH HHS/United States
- T32 EY014537/EY/NEI NIH HHS/United States
- P30 EY001931/EY/NEI NIH HHS/United States
- R01EY11123/EY/NEI NIH HHS/United States
- P30EY08571/EY/NEI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical