Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

Comparative Study
.2009 May;53(6):672-9.
doi: 10.1016/j.toxicon.2009.01.034.

Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes

Affiliations
Comparative Study

Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes

H Lisle Gibbs et al. Toxicon.2009 May.

Abstract

Understanding the molecular bases of adaptations requires assessing the functional significance of phenotypic variation at the molecular level. Here we conduct such an assessment for an adaptive trait (snake venom proteins) which shows high levels of interspecific variation at the molecular level. We tested the toxicity of venom from four taxa of Sistrurus rattlesnakes with different diets towards 3 representative prey (mice, lizards and frogs). There were significant differences among prey in their overall susceptibility to Sistrurus venom, with frogs being an order of magnitude more resistant than mice or lizards. However, only in mice was there substantial variation in the toxicity of venom from different Sistrurus taxa, with the variation being roughly correlated with the incidence of mammals in the snake's diet. A comparative analysis using published data of the toxicity of rattlesnake and outgroup (Agkistrodon) venoms to mice confirms that both the gain and loss of toxicity to mammals were major modes of venom evolution in Sistrurus catenatus and Sistrurus miliarius. Our findings identify toxicity to mammals as a major axis along which venom evolution has occurred among Sistrurus rattlesnakes, with little evidence for evolutionary changes in toxicity towards the other prey tested. They also emphasize the need to consider ecological and evolutionary factors other than diet alone as causes of variation in venom toxicity.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp