Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

American Chemical Society full text link American Chemical Society
Full text links

Actions

.2009 Jul 1;81(13):5273-80.
doi: 10.1021/ac900484x.

Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica

Affiliations

Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica

Jin Tan et al. Anal Chem..

Abstract

A fluorescent indicator-displacement molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica was developed for discriminating saccharides. D-Fructose imprinted material (FruIM), D-xylose imprinted material (XylIM) together with a control blank nonimprinted material (NIM) were synthesized as the elements of the imprinting sensor array. Spectrofluorimetric titrations of the three materials with eight selected saccharides were carried out, and Stern-Volmer quenching constants (K(SV)) of NIM, FruIM, and XylIM with the eight selected saccharides were obtained to investigate the interaction of the materials with saccharides. The present approach couples molecular imprinting technique to indicator-displacement strategy with the use of one conventional saccharide receptor (phenylboronic acid) and one commercially available fluorescent dye (Alizarin Red S., ARS) as the indicator, and allows identifying two template saccharides (D-fructose and D-xylose) plus eight nontemplate saccharides (D-arabinose, D-glucose, D-galactose, D-mannose, L-sorbose, D-ribose, L-rhamnose and sucrose). The principal component analysis (PCA) plot shows a clear discrimination of the 10 tested saccharides at 100 mM and the first principal component possesses 94.8% of the variation. Besides, the developed saccharide imprinted sensor array is successfully applied to discriminating three brands of orange juice beverage.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
American Chemical Society full text link American Chemical Society
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp