Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure
- PMID:19501137
- DOI: 10.1016/j.toxlet.2009.05.020
Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure
Abstract
The present study investigated the penetration and potential toxicity of titanium dioxide (TiO(2)) nanoparticles following its dermal exposure in vitro and in vivo. In vitro, after exposure to isolated porcine skin for 24h, titanium dioxide nanoparticles of carious sizes cannot penetrate through stratum corneum. Interestingly, when studied in vivo, quite different results were obtained. After topically applied on pig ear for 30 days, TiO(2) nanomaterials (4 nm and 60 nm) can penetrate through horny layer, and be located in deep layer of epidermis. Furthermore, after 60 days dermal exposure in hairless mice, nano-TiO(2) particles can penetrate through the skin, reach different tissues and induce diverse pathological lesions in several major organs. Notably, P25 (21 nm) TiO(2) nanomaterials shows a wider tissue distribution, and can even be found in the brain without inducing any pathological changes. Among all of the organs examined, the skin and liver displayed the most severe pathological changes that correspond to the significant changes in SOD and MDA levels. These results suggest that the pathological lesions are likely to be mediated through the oxidative stress induced by the deposited nanoparticles. Accordingly, the collagen content expressed as HYP content are also significantly reduced in mouse skin samples, indicating that topically applied nano-TiO(2) in skin for a prolonged time can induce skin aging. Altogether, the present study indicates that nanosize TiO(2) may pose a health risk to human after dermal exposure over a relative long time period.
Comment in
- Concerns regarding nano-sized titanium dioxide dermal penetration and toxicity study.Jonaitis TS, Card JW, Magnuson B.Jonaitis TS, et al.Toxicol Lett. 2010 Feb 1;192(2):268-9. doi: 10.1016/j.toxlet.2009.10.007. Epub 2009 Oct 28.Toxicol Lett. 2010.PMID:19836437
Similar articles
- Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin.Adachi K, Yamada N, Yoshida Y, Yamamoto O.Adachi K, et al.Exp Dermatol. 2013 Apr;22(4):278-83. doi: 10.1111/exd.12121.Exp Dermatol. 2013.PMID:23528214
- Nanocrystalline titanium dioxide and magnesium oxide in vitro dermal absorption in human skin.van der Merwe D, Tawde S, Pickrell JA, Erickson LE.van der Merwe D, et al.Cutan Ocul Toxicol. 2009;28(2):78-82. doi: 10.1080/15569520902914926.Cutan Ocul Toxicol. 2009.PMID:19514931
- Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management.Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM.Warheit DB, et al.Toxicol Lett. 2007 Jul 10;171(3):99-110. doi: 10.1016/j.toxlet.2007.04.008. Epub 2007 Apr 27.Toxicol Lett. 2007.PMID:17566673
- Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety.Nohynek GJ, Lademann J, Ribaud C, Roberts MS.Nohynek GJ, et al.Crit Rev Toxicol. 2007 Mar;37(3):251-77. doi: 10.1080/10408440601177780.Crit Rev Toxicol. 2007.PMID:17453934Review.
- Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin.[No authors listed][No authors listed]Int J Toxicol. 2007;26 Suppl 1:3-106. doi: 10.1080/10915810601163939.Int J Toxicol. 2007.PMID:17365137Review.
Cited by
- Quantification of quantum dot murine skin penetration with UVR barrier impairment.Mortensen LJ, Jatana S, Gelein R, De Benedetto A, De Mesy Bentley KL, Beck LA, Elder A, Delouise LA.Mortensen LJ, et al.Nanotoxicology. 2013 Dec;7(8):1386-98. doi: 10.3109/17435390.2012.741726. Epub 2013 Apr 17.Nanotoxicology. 2013.PMID:23078247Free PMC article.
- Development and Evaluation of a System for the Semi-Quantitative Determination of the Physical Properties of Skin After Exposure to Silver Nanoparticles.Tao H, Nagano K, Tasaki I, Zhang TQ, Ishizaka T, Gao JQ, Harada K, Hirata K, Tsujino H, Higashisaka K, Tsutsumi Y.Tao H, et al.Nanoscale Res Lett. 2020 Sep 29;15(1):187. doi: 10.1186/s11671-020-03421-x.Nanoscale Res Lett. 2020.PMID:32990829Free PMC article.
- Titanium Dioxide Nanoparticles Induced HeLa Cell Necrosis under UVA Radiation through the ROS-mPTP Pathway.Geng R, Ren Y, Rao R, Tan X, Zhou H, Yang X, Liu W, Lu Q.Geng R, et al.Nanomaterials (Basel). 2020 Oct 15;10(10):2029. doi: 10.3390/nano10102029.Nanomaterials (Basel). 2020.PMID:33076304Free PMC article.
- Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™).Wills JW, Hondow N, Thomas AD, Chapman KE, Fish D, Maffeis TG, Penny MW, Brown RA, Jenkins GJ, Brown AP, White PA, Doak SH.Wills JW, et al.Part Fibre Toxicol. 2016 Sep 9;13(1):50. doi: 10.1186/s12989-016-0161-5.Part Fibre Toxicol. 2016.PMID:27613375Free PMC article.
- Impact of semi-solid formulations on skin penetration of iron oxide nanoparticles.Musazzi UM, Santini B, Selmin F, Marini V, Corsi F, Allevi R, Ferretti AM, Prosperi D, Cilurzo F, Colombo M, Minghetti P.Musazzi UM, et al.J Nanobiotechnology. 2017 Feb 17;15(1):14. doi: 10.1186/s12951-017-0249-6.J Nanobiotechnology. 2017.PMID:28212635Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources