A quantitative stopped-flow fluorescence assay for measuring polymerase elongation rates
- PMID:19406094
- PMCID: PMC2713312
- DOI: 10.1016/j.ab.2009.04.035
A quantitative stopped-flow fluorescence assay for measuring polymerase elongation rates
Abstract
The measurement of nucleic acid polymerase elongation rates is often done via a lengthy experimental process involving radiolabeled substrates, quenched elongation experiments, electrophoretic product separation, and band quantitation. In this work, we describe an alternative real-time stopped-flow assay for obtaining kinetic parameters for elongation of extended sequences. The assay builds on our earlier PETE (polymerase elongation template element) assay designed for high-throughput screening purposes [S.P. Mestas, A.J. Sholders, O.B. Peersen, A fluorescence polarization-based screening assay for nucleic acid polymerase elongation activity, Anal. Biochem. 365 (2007) 194-200] and relies on measuring how long it takes a polymerase to reach the end of a defined length template. Using poliovirus polymerase and self-priming hairpin RNA substrates with 6- to 26-nt-long templating regions, we demonstrate that the assay can be used to determine V(max) rates for elongation and apparent K(m) values for nucleotide triphosphate (NTP) use. Modeling the reaction kinetics as a series of irreversible steps allows us to numerically fit the entire time-based dataset by properly accounting for the temporal distribution of intermediate species. This enables us to determine average elongation rates over heterogeneous templating regions that mimic viral genome substrates. The assay is easily extendable to other RNA and DNA polymerases, can accommodate secondary structures in the template, and can in principle be used for any enzyme traversing along an extended substrate.
Figures







Similar articles
- A fluorescence polarization-based screening assay for nucleic acid polymerase elongation activity.Mestas SP, Sholders AJ, Peersen OB.Mestas SP, et al.Anal Biochem. 2007 Jun 15;365(2):194-200. doi: 10.1016/j.ab.2007.03.039. Epub 2007 Apr 2.Anal Biochem. 2007.PMID:17475199Free PMC article.
- Fluorescence-based assay to measure the real-time kinetics of nucleotide incorporation during transcription elongation.Tang GQ, Anand VS, Patel SS.Tang GQ, et al.J Mol Biol. 2011 Jan 21;405(3):666-78. doi: 10.1016/j.jmb.2010.10.020. Epub 2010 Oct 28.J Mol Biol. 2011.PMID:21035457Free PMC article.
- Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase.Liu C, Martin CT.Liu C, et al.J Mol Biol. 2001 May 4;308(3):465-75. doi: 10.1006/jmbi.2001.4601.J Mol Biol. 2001.PMID:11327781
- Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase.Tang GQ, Roy R, Bandwar RP, Ha T, Patel SS.Tang GQ, et al.Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22175-80. doi: 10.1073/pnas.0906979106. Epub 2009 Dec 11.Proc Natl Acad Sci U S A. 2009.PMID:20018723Free PMC article.
- Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.Imashimizu M, Shimamoto N, Oshima T, Kashlev M.Imashimizu M, et al.Transcription. 2014;5(1):e28285. doi: 10.4161/trns.28285.Transcription. 2014.PMID:25764114Free PMC article.Review.
Cited by
- Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation.Shu B, Gong P.Shu B, et al.Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4005-14. doi: 10.1073/pnas.1602591113. Epub 2016 Jun 23.Proc Natl Acad Sci U S A. 2016.PMID:27339134Free PMC article.
- Decomposing bulk signals to reveal hidden information in processive enzyme reactions: A case study in mRNA translation.Haase N, Holtkamp W, Christ S, Heinemann D, Rodnina MV, Rudorf S.Haase N, et al.PLoS Comput Biol. 2024 Mar 5;20(3):e1011918. doi: 10.1371/journal.pcbi.1011918. eCollection 2024 Mar.PLoS Comput Biol. 2024.PMID:38442108Free PMC article.
- Measurement of incorporation kinetics of non-fluorescent native nucleotides by DNA polymerases using fluorescence microscopy.Walsh MT, Huang X.Walsh MT, et al.Nucleic Acids Res. 2017 Dec 1;45(21):e175. doi: 10.1093/nar/gkx833.Nucleic Acids Res. 2017.PMID:29036327Free PMC article.
- Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces.Langer A, Schräml M, Strasser R, Daub H, Myers T, Heindl D, Rant U.Langer A, et al.Sci Rep. 2015 Jul 15;5:12066. doi: 10.1038/srep12066.Sci Rep. 2015.PMID:26174478Free PMC article.
- A nucleobase-binding pocket in a viral RNA-dependent RNA polymerase contributes to elongation complex stability.Shi W, Ye HQ, Deng CL, Li R, Zhang B, Gong P.Shi W, et al.Nucleic Acids Res. 2020 Feb 20;48(3):1392-1405. doi: 10.1093/nar/gkz1170.Nucleic Acids Res. 2020.PMID:31863580Free PMC article.
References
- Johnson KA. Rapid quench kinetic analysis of polymerases, adenosinetriphosphatases, and enzyme intermediates. Methods Enzymol. 1995;249:38–61. - PubMed
- Patel SS, Bandwar RP. Fluorescence methods for studying the kinetics and thermodynamics of transcription initiation. Methods Enzymol. 2003;370:668–86. - PubMed
- Datta K, Johnson NP, von Hippel PH. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy. J Mol Biol. 2006;360:800–13. - PubMed
- Johnson RS, Strausbauch M, Cooper R, Register JK. Rapid kinetic analysis of transcription elongation by Escherichia coli RNA polymerase. J Mol Biol. 2008;381:1106–13. - PubMed
- Upson RH, Haugland RP, Malekzadeh MN, Haugland RP. A spectrophotometric method to measure enzymatic activity in reactions that generate inorganic pyrophosphate. Anal Biochem. 1996;243:41–5. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials