Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Actions

Share

.1991 Apr;10(2):213-32.
doi: 10.1007/BF01024786.

Spectroscopic, immunochemical, and thermodynamic properties of carboxymethyl(Cys6, Cys127)-hen egg white lysozyme

Affiliations

Spectroscopic, immunochemical, and thermodynamic properties of carboxymethyl(Cys6, Cys127)-hen egg white lysozyme

M E Denton et al. J Protein Chem.1991 Apr.

Abstract

A three-disulfide form of hen egg white lysozyme with Cys6 and Cys127 blocked by carboxymethyl groups was prepared, purified, and characterized for eventual use in protein folding experiments. Trypsin digestion followed by proline-specific endopeptidase digestion facilitated the unambiguous assignment of the disulfide bond pairings and the modified residues in this derivative. 3SS-lysozyme demonstrated nearly full enzymatic activity at its pH optimum, pH 5.5. The 3SS-lysozyme derivative and unmodified lysozyme were shown to be identical by CD spectroscopy at pH 3.6. Immunochemical binding assays demonstrated that the conformation of lysozyme was perturbed predominantly only locally by breaking and blocking the disulfide bond between Cys6 and Cys127. Both 3SS-lysozyme and unmodified lysozyme exhibited reversible thermally induced transitions at pH 2.0, but the Tm of 3SS-lysozyme, 18.9 degrees C, was found to be 34 degrees lower than that of native lysozyme under the same conditions. The conformational chemical potential of the denatured form of unmodified lysozyme was determined from the transition curves to be approximately 6.7 kcal/mol higher than that of the denatured form of 3SS-lysozyme, at pH 2.0 and 35 degrees C, if the conformational chemical potential for the folded forms of both 3SS-lysozyme and unmodified lysozyme is arbitrarily assumed to be 0.0 kcal/mol. A calculation of the increase in the theoretical loop entropy of denatured 3SS-lysozyme resulting from the cleavage of the Cys6-Cys127 disulfide bond, however, yielded a value of only 5.4 kcal/mol for the difference in conformational chemical potential. This suggests that, in addition to the entropic component, there is also an enthalpic contribution to the difference in the conformational chemical potential corresponding to approximately 1.3 kcal/mol. Thus, it is concluded that the reduction and blocking of the disulfide bond between Cys6 and Cys127 destabilizes 3SS-lysozyme relative to unmodified lysozyme predominantly by stabilizing the denatured conformation by increasing its chain entropy.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

References

    1. Biochemistry. 1978 Apr 18;17(8):1479-84 - PubMed
    1. Biochemistry. 1974 Feb 26;13(5):1014-21 - PubMed
    1. Biochim Biophys Acta. 1971 Feb 16;229(2):496-503 - PubMed
    1. Proc R Soc Lond B Biol Sci. 1967 Apr 18;167(1009):365-77 - PubMed
    1. Methods Enzymol. 1980;70(A):280-91 - PubMed

Publication types

MeSH terms

Substances

Related information

Grants and funding

Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp