Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells
- PMID:19132220
- PMCID: PMC2963177
Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells
Abstract
Overexpression of plasminogen activator inhibitor-1 (SERPINE1, PAI-1), the major physiological inhibitor of pericellular plasmin generation, is a significant causative factor in the progression of vascular disorders (e.g. arteriosclerosis, thrombosis, perivascular fibrosis) as well as a biomarker and a predictor of cardiovascular-disease associated mortality. PAI-1 is a temporal/spatial regulator of pericellular proteolysis and ECM accumulation impacting, thereby, vascular remodeling, smooth muscle cell migration, proliferation and apoptosis. Within the specific context of TGF-beta1-initiated vascular fibrosis and neointima formation, PAI-1 is a member of the most prominently expressed subset of TGF-beta1-induced transcripts. Recent findings implicate EGFR/pp60c-src-->MEK/ERK1/2 and Rho/ROCK-->SMAD2/3 signaling in TGF-beta1-stimulated PAI-1 expression in vascular smooth muscle cells. The EGFR is a direct upstream regulator of MEK/ERK1/2 while Rho/ROCK modulate both the duration of SMAD2/3 phosphorylation and nuclear accumulation. E-box motifs (CACGTG) in the PE1/PE2 promoter regions of the human PAI-1 gene, moreover, are platforms for a MAP kinase-directed USF subtype switch (USF-1-->USF-2) in response to growth factor addition suggesting that the EGFR-->MEK/ERK axis impacts PAI-1 expression, at least partly, through USF-dependent transcriptional controls. This paper reviews recent data suggesting the essential cooperativity among the EGFR-->MAP kinase cascade, the Rho/ROCK pathway and SMADs in TGF-beta1-initiated PAI-1 expression. The continued clarification of mechanistic controls on PAI-1 transcription may lead to new targeted therapies and clinically-relevant options for the treatment of vascular diseases in which PAI-1 dysregulation is a major underlying pathogenic feature.
Figures


Similar articles
- TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling.Samarakoon R, Higgins SP, Higgins CE, Higgins PJ.Samarakoon R, et al.J Mol Cell Cardiol. 2008 Mar;44(3):527-38. doi: 10.1016/j.yjmcc.2007.12.006. Epub 2008 Jan 3.J Mol Cell Cardiol. 2008.PMID:18255094Free PMC article.
- TGF-beta 1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling.Kutz SM, Higgins CE, Samarakoon R, Higgins SP, Allen RR, Qi L, Higgins PJ.Kutz SM, et al.Exp Cell Res. 2006 Apr 15;312(7):1093-105. doi: 10.1016/j.yexcr.2005.12.027. Epub 2006 Feb 7.Exp Cell Res. 2006.PMID:16457817
- Redox-induced Src kinase and caveolin-1 signaling in TGF-β1-initiated SMAD2/3 activation and PAI-1 expression.Samarakoon R, Chitnis SS, Higgins SP, Higgins CE, Krepinsky JC, Higgins PJ.Samarakoon R, et al.PLoS One. 2011;6(7):e22896. doi: 10.1371/journal.pone.0022896. Epub 2011 Jul 28.PLoS One. 2011.PMID:21829547Free PMC article.
- The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1.Samarakoon R, Higgins SP, Higgins CE, Higgins PJ.Samarakoon R, et al.Biomolecules. 2019 Aug 3;9(8):341. doi: 10.3390/biom9080341.Biomolecules. 2019.PMID:31382626Free PMC article.Review.
- TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ.Higgins CE, et al.FASEB J. 2019 Oct;33(10):10596-10606. doi: 10.1096/fj.201900943R. Epub 2019 Jul 6.FASEB J. 2019.PMID:31284746Free PMC article.Review.
Cited by
- The Role of the Fibronectin Synergy Site for Skin Wound Healing.Gimeno-LLuch I, Benito-Jardón M, Guerrero-Barberà G, Burday N, Costell M.Gimeno-LLuch I, et al.Cells. 2022 Jul 2;11(13):2100. doi: 10.3390/cells11132100.Cells. 2022.PMID:35805184Free PMC article.
- Genome-wide transcriptional analysis of differentially expressed genes in diabetic, healing corneal epithelial cells: hyperglycemia-suppressed TGFβ3 expression contributes to the delay of epithelial wound healing in diabetic corneas.Bettahi I, Sun H, Gao N, Wang F, Mi X, Chen W, Liu Z, Yu FS.Bettahi I, et al.Diabetes. 2014 Feb;63(2):715-27. doi: 10.2337/db13-1260. Epub 2013 Dec 4.Diabetes. 2014.PMID:24306208Free PMC article.
- PAI-1 in tissue fibrosis.Ghosh AK, Vaughan DE.Ghosh AK, et al.J Cell Physiol. 2012 Feb;227(2):493-507. doi: 10.1002/jcp.22783.J Cell Physiol. 2012.PMID:21465481Free PMC article.Review.
- TGF-β1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology.Serralheiro P, Soares A, Costa Almeida CM, Verde I.Serralheiro P, et al.Int J Mol Sci. 2017 Nov 26;18(12):2534. doi: 10.3390/ijms18122534.Int J Mol Sci. 2017.PMID:29186866Free PMC article.Review.
- Partners in crime: the TGFβ and MAPK pathways in cancer progression.Chapnick DA, Warner L, Bernet J, Rao T, Liu X.Chapnick DA, et al.Cell Biosci. 2011 Dec 28;1:42. doi: 10.1186/2045-3701-1-42.Cell Biosci. 2011.PMID:22204556Free PMC article.
References
- Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med. 2000;342:1792–1801. - PubMed
- Sobel BE, Taatjes DJ, Schneider DJ. Intramural plasminogen activator inhibitor type-1 and coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23:1979–1989. - PubMed
- Vaughan DE. PAI-1 and cellular migration: dabbling in paradox. Arterioscler Thromb Vasc Biol. 2002;22:1522–1523. - PubMed
- Agirbasli M. Pivotal role of plasminogen-activator inhibitor 1 in vascular disease. Int J Clin Pract. 2005;59:102–106. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous