Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes
- PMID:19076438
- PMCID: PMC3040634
- DOI: 10.1196/annals.1427.026
Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes
Abstract
Oxidative stress and mitochondrial dysfunction have been closely associated in many subcellular, cellular, animal, and human studies of both acute brain injury and neurodegenerative diseases. Our animal models of brain injury caused by cardiac arrest illustrate this relationship and demonstrate that both oxidative molecular modifications and mitochondrial metabolic impairment are exacerbated by reoxygenation of the brain using 100% ventilatory O(2) compared to lower levels that maintain normoxemia. Numerous molecular mechanisms may be responsible for mitochondrial dysfunction caused by oxidative stress, including oxidation and inactivation of mitochondrial proteins, promotion of the mitochondrial membrane permeability transition, and consumption of metabolic cofactors and intermediates, for example, NAD(H). Moreover, the relative contribution of these mechanisms to cell injury and death is likely different among different types of brain cells, for example, neurons and astrocytes. In order to better understand these oxidative stress mechanisms and their relevance to neurologic disorders, we have undertaken studies with primary cultures of astrocytes and neurons exposed to O(2) and glucose deprivation and reoxygenation and compared the results of these studies to those using a rat model of neonatal asphyxic brain injury. These results support the hypothesis that release and or consumption of mitochondrial NAD(H) is at least partially responsible for respiratory inhibition, particularly in neurons.
Figures




Similar articles
- The mitochondrial permeability transition pore and nitric oxide synthase mediate early mitochondrial depolarization in astrocytes during oxygen-glucose deprivation.Reichert SA, Kim-Han JS, Dugan LL.Reichert SA, et al.J Neurosci. 2001 Sep 1;21(17):6608-16. doi: 10.1523/JNEUROSCI.21-17-06608.2001.J Neurosci. 2001.PMID:11517250Free PMC article.
- Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture.Almeida A, Delgado-Esteban M, Bolaños JP, Medina JM.Almeida A, et al.J Neurochem. 2002 Apr;81(2):207-17. doi: 10.1046/j.1471-4159.2002.00827.x.J Neurochem. 2002.PMID:12064468
- Manganese induces the mitochondrial permeability transition in cultured astrocytes.Rao KV, Norenberg MD.Rao KV, et al.J Biol Chem. 2004 Jul 30;279(31):32333-8. doi: 10.1074/jbc.M402096200. Epub 2004 Jun 1.J Biol Chem. 2004.PMID:15173181
- Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.Sas K, Robotka H, Toldi J, Vécsei L.Sas K, et al.J Neurol Sci. 2007 Jun 15;257(1-2):221-39. doi: 10.1016/j.jns.2007.01.033. Epub 2007 Apr 25.J Neurol Sci. 2007.PMID:17462670Review.
- Glucose and Intermediary Metabolism and Astrocyte-Neuron Interactions Following Neonatal Hypoxia-Ischemia in Rat.Brekke E, Berger HR, Widerøe M, Sonnewald U, Morken TS.Brekke E, et al.Neurochem Res. 2017 Jan;42(1):115-132. doi: 10.1007/s11064-016-2149-9. Epub 2016 Dec 26.Neurochem Res. 2017.PMID:28019006Review.
Cited by
- Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase.Bazil JN, Pannala VR, Dash RK, Beard DA.Bazil JN, et al.Free Radic Biol Med. 2014 Dec;77:121-9. doi: 10.1016/j.freeradbiomed.2014.08.023. Epub 2014 Sep 16.Free Radic Biol Med. 2014.PMID:25236739Free PMC article.
- Nicotinamide pre-treatment ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia.Shetty PK, Galeffi F, Turner DA.Shetty PK, et al.Neurobiol Dis. 2014 Feb;62:469-78. doi: 10.1016/j.nbd.2013.10.025. Epub 2013 Oct 31.Neurobiol Dis. 2014.PMID:24184921Free PMC article.
- Dietary restriction in cerebral bioenergetics and redox state.Amigo I, Kowaltowski AJ.Amigo I, et al.Redox Biol. 2014 Jan 11;2:296-304. doi: 10.1016/j.redox.2013.12.021. eCollection 2014.Redox Biol. 2014.PMID:24563846Free PMC article.Review.
- Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury.Thibodeau A, Geng X, Previch LE, Ding Y.Thibodeau A, et al.Brain Circ. 2016 Apr-Jun;2(2):61-66. doi: 10.4103/2394-8108.186256. Epub 2016 Jul 13.Brain Circ. 2016.PMID:30276274Free PMC article.Review.
- Serum fibroblast growth factor 21 levels after out of hospital cardiac arrest are associated with neurological outcome.Pekkarinen PT, Skrifvars MB, Lievonen V, Jakkula P, Albrecht L, Loisa P, Tiainen M, Pettilä V, Reinikainen M, Hästbacka J.Pekkarinen PT, et al.Sci Rep. 2021 Jan 12;11(1):690. doi: 10.1038/s41598-020-80086-7.Sci Rep. 2021.PMID:33436812Free PMC article.
References
- BLOMGREN K, HAGBERG H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic. Biol. Med. 2006;40:388–397. - PubMed
- FISKUM G, MURPHY AN, BEAL MF. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J. Cereb. Blood Flow Metab. 1999;19:351–369. - PubMed
- RIZZUTO R, SIMPSON AW, BRINI M, POZZAN T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. 1992;358:325–327. [published erratum appears in Nature 1992 Dec 24- 31;360(6406):768] - PubMed
- CHANG LH, SHIMIZU H, ABIKO H, SWANSON RA, FADEN AI, JAMES TL, WEINSTEIN PR. Effect of dichloroacetate on recovery of brain lactate, phosphorus energy metabolites, and glutamate during reperfusion after complete cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 1992;12:1030–1038. - PubMed
- KURODA S, KATSURA KI, TSUCHIDATE R, SIESJO BK. Secondary bioenergetic failure after transient focal ischaemia is due to mitochondrial injury. Acta Physiol. Scand. 1996;156:149–150. - PubMed
Publication types
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources