Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Review
.2008 Nov;108(3):227-38.
doi: 10.1254/jphs.08r01cr. Epub 2008 Nov 13.

Regulation of neuronal glutathione synthesis

Affiliations
Free article
Review

Regulation of neuronal glutathione synthesis

Koji Aoyama et al. J Pharmacol Sci.2008 Nov.
Free article

Abstract

The brain is among the major organs generating large amounts of reactive oxygen species and is especially susceptible to oxidative stress. Glutathione (GSH) plays critical roles as an antioxidant, enzyme cofactor, cysteine storage form, the major redox buffer, and a neuromodulator in the central nervous system. GSH deficiency has been implicated in neurodegenerative diseases. GSH is a tripeptide comprised of glutamate, cysteine, and glycine. Cysteine is the rate-limiting substrate for GSH synthesis within neurons. Most neuronal cysteine uptake is mediated by sodium-dependent excitatory amino acid transporter (EAAT) systems, known as excitatory amino acid carrier 1 (EAAC1). Previous studies demonstrated EAAT is vulnerable to oxidative stress, leading to impaired function. A recent study found EAAC1-deficient mice to have decreased brain GSH levels and increased susceptibility to oxidative stress. The function of EAAC1 is also regulated by glutamate transporter associated protein 3-18. This review focuses on the mechanisms underlying GSH synthesis, especially those related to neuronal cysteine transport via EAAC1, as well as on the importance of GSH functions against oxidative stress.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp