Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

.2008 Oct 30;455(7217):1235-9.
doi: 10.1038/nature07281.

Agrochemicals increase trematode infections in a declining amphibian species

Affiliations

Agrochemicals increase trematode infections in a declining amphibian species

Jason R Rohr et al. Nature..

Abstract

Global amphibian declines have often been attributed to disease, but ignorance of the relative importance and mode of action of potential drivers of infection has made it difficult to develop effective remediation. In a field study, here we show that the widely used herbicide, atrazine, was the best predictor (out of more than 240 plausible candidates) of the abundance of larval trematodes (parasitic flatworms) in the declining northern leopard frog Rana pipiens. The effects of atrazine were consistent across trematode taxa. The combination of atrazine and phosphate--principal agrochemicals in global corn and sorghum production--accounted for 74% of the variation in the abundance of these often debilitating larval trematodes (atrazine alone accounted for 51%). Analysis of field data supported a causal mechanism whereby both agrochemicals increase exposure and susceptibility to larval trematodes by augmenting snail intermediate hosts and suppressing amphibian immunity. A mesocosm experiment demonstrated that, relative to control tanks, atrazine tanks had immunosuppressed tadpoles, had significantly more attached algae and snails, and had tadpoles with elevated trematode loads, further supporting a causal relationship between atrazine and elevated trematode infections in amphibians. These results raise concerns about the role of atrazine and phosphate in amphibian declines, and illustrate the value of quantifying the relative importance of several possible drivers of disease risk while determining the mechanisms by which they facilitate disease emergence.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp