HCO3-/Cl- anion exchanger SLC4A2 is required for proper osteoclast differentiation and function
- PMID:18971331
- PMCID: PMC2579356
- DOI: 10.1073/pnas.0808763105
HCO3-/Cl- anion exchanger SLC4A2 is required for proper osteoclast differentiation and function
Abstract
As the only cell capable of bone resorption, the osteoclast is a central mediator of skeletal homeostasis and disease. To efficiently degrade mineralized tissue, these multinucleated giant cells secrete acid into a resorption lacuna formed between their apical membrane and the bone surface. For each proton pumped into this extracellular compartment, one bicarbonate ion remains in the cytoplasm. To prevent alkalinization of the cytoplasm, a basolateral bicarbonate/chloride exchanger provides egress for intracellular bicarbonate. However, the identity of this exchanger is unknown. Here, we report that the bicarbonate/chloride exchanger, solute carrier family 4, anion exchanger, member 2 (SLC4A2), is up-regulated during osteoclast differentiation. Suppression of Slc4a2 expression by RNA interference inhibits the ability of RAW cells, a mouse macrophage cell line, to differentiate into osteoclasts and resorb mineralized matrix in vitro. Accordingly, Slc4a2-deficient mice fail to remodel the primary, cartilaginous skeletal anlagen. Abnormal multinucleated giant cells are present in the bone marrow of Slc4a2-deficient mice. Though these cells express the osteoclast markers CD68, cathepsin K, and NFATc1, compared with their wild-type (WT) counterparts they are larger, fail to express tartrate-resistant acid phosphatase (TRAP) activity, and display a propensity to undergo apoptosis. In vitro Slc4a2-deficient osteoclasts are unable to resorb mineralized tissue and cannot form an acidified, extracellular resorption compartment. These data highlight SLC4A2 as a critical mediator of osteoclast differentiation and function in vitro and in vivo.
Figures





Similar articles
- SLC4A2-mediated Cl-/HCO3- exchange activity is essential for calpain-dependent regulation of the actin cytoskeleton in osteoclasts.Coury F, Zenger S, Stewart AK, Stephens S, Neff L, Tsang K, Shull GE, Alper SL, Baron R, Aliprantis AO.Coury F, et al.Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2163-8. doi: 10.1073/pnas.1206392110. Epub 2013 Jan 22.Proc Natl Acad Sci U S A. 2013.PMID:23341620Free PMC article.
- A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle.Meyers SN, McDaneld TG, Swist SL, Marron BM, Steffen DJ, O'Toole D, O'Connell JR, Beever JE, Sonstegard TS, Smith TP.Meyers SN, et al.BMC Genomics. 2010 May 27;11:337. doi: 10.1186/1471-2164-11-337.BMC Genomics. 2010.PMID:20507629Free PMC article.
- SLC4A2 Deficiency Causes a New Type of Osteopetrosis.Xue JY, Grigelioniene G, Wang Z, Nishimura G, Iida A, Matsumoto N, Tham E, Miyake N, Ikegawa S, Guo L.Xue JY, et al.J Bone Miner Res. 2022 Feb;37(2):226-235. doi: 10.1002/jbmr.4462. Epub 2021 Nov 11.J Bone Miner Res. 2022.PMID:34668226
- SLC4A2, another gene involved in acid-base balancing machinery of osteoclasts, causes osteopetrosis.Xue JY, Ikegawa S, Guo L.Xue JY, et al.Bone. 2023 Feb;167:116603. doi: 10.1016/j.bone.2022.116603. Epub 2022 Nov 4.Bone. 2023.PMID:36343920Review.
- [Osteoclasts in bone metabolism].Hakeda Y, Kumegawa M.Hakeda Y, et al.Kaibogaku Zasshi. 1991 Aug;66(4):215-25.Kaibogaku Zasshi. 1991.PMID:1759556Review.Japanese.
Cited by
- Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Calu-3.Huang J, Shan J, Kim D, Liao J, Evagelidis A, Alper SL, Hanrahan JW.Huang J, et al.J Physiol. 2012 Nov 1;590(21):5299-316. doi: 10.1113/jphysiol.2012.236919. Epub 2012 Jul 16.J Physiol. 2012.PMID:22802585Free PMC article.
- Osteopetrorickets due to Snx10 deficiency in mice results from both failed osteoclast activity and loss of gastric acid-dependent calcium absorption.Ye L, Morse LR, Zhang L, Sasaki H, Mills JC, Odgren PR, Sibbel G, Stanley JR, Wong G, Zamarioli A, Battaglino RA.Ye L, et al.PLoS Genet. 2015 Mar 26;11(3):e1005057. doi: 10.1371/journal.pgen.1005057. eCollection 2015 Mar.PLoS Genet. 2015.PMID:25811986Free PMC article.
- Systems genetics in diversity outbred mice inform BMD GWAS and identify determinants of bone strength.Al-Barghouthi BM, Mesner LD, Calabrese GM, Brooks D, Tommasini SM, Bouxsein ML, Horowitz MC, Rosen CJ, Nguyen K, Haddox S, Farber EA, Onengut-Gumuscu S, Pomp D, Farber CR.Al-Barghouthi BM, et al.Nat Commun. 2021 Jun 7;12(1):3408. doi: 10.1038/s41467-021-23649-0.Nat Commun. 2021.PMID:34099702Free PMC article.
- The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks.Ben-Tabou de-Leon S.Ben-Tabou de-Leon S.Cells. 2022 Feb 9;11(4):595. doi: 10.3390/cells11040595.Cells. 2022.PMID:35203246Free PMC article.Review.
- The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters.Parker MD, Boron WF.Parker MD, et al.Physiol Rev. 2013 Apr;93(2):803-959. doi: 10.1152/physrev.00023.2012.Physiol Rev. 2013.PMID:23589833Free PMC article.Review.
References
- Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389–406. - PubMed
- Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638–649. - PubMed
- Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40:251–264. - PubMed
- Rousselle AV, Heymann D. Osteoclastic acidification pathways during bone resorption. Bone. 2002;30:533–540. - PubMed
- Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis. N Engl J Med. 2004;351:2839–2849. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous