Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.2009 Feb;56(2):455-62.
doi: 10.1016/j.neuropharm.2008.09.018. Epub 2008 Oct 14.

Allosteric modulation of 5-HT(1A) receptors by zinc: Binding studies

Affiliations

Allosteric modulation of 5-HT(1A) receptors by zinc: Binding studies

Sergio Barrondo et al. Neuropharmacology.2009 Feb.

Abstract

5-HT(1A) receptors were studied via [(3)H]WAY-100635 and [(3)H]8-OH-DPAT binding to rat brain cortical membranes. We characterized the effect of zinc (Zn(2+)) on the binding properties of the 5-HT(1A) receptor. The allosteric ternary complex model was applied to determine the dissociation constant (K(A)) of Zn(2+) and their cooperativity factors (alpha) affecting the dissociation constants (K(D), K(i)) of [(3)H]WAY-100635, [(3)H]8-OH-DPAT, and serotonin (5-HT), the endogenous neurotransmitter. Zn(2+) (5microM-1mM) inhibited the binding of agonist/antagonist to 5-HT1A receptors, mostly by decreasing both the ligands' affinity and the maximal number of sites. In [(35)S]GTPgammaS binding assays Zn(2+) behaved as insourmountable antagonist of 5-HT1A receptors, in agreement with radioligand binding assays. The residues involved in the formation of the inhibitory binding site on the 5-HT1A receptor were assessed by using N-ethyl-maleimide (NEM) or diethylpyrocarbonate (DEPC) which modify preferentially cysteine and histidine residues, respectively. Exposure to both agents did not block the negative allosteric effects of Zn(2+) on agonist and antagonist binding. Our findings represent the first quantitative analysis of allosteric binding interactions for 5-HT(1A) receptors. The physiological significance of Zn(2+) modulation of 5-HT(1A) receptors is unclear, but the colocalization of 5-HT(1A) receptors and Zn(2+) in the nervous system (e.g. in the hippocampus and cerebral cortex) suggests that Zn(2+) released at nerve terminals may modulate signals generated by the 5-HT(1A) receptors in vivo. Finally, these findings suggest that synaptic Zn(2+) may be a factor influencing the effectiveness of therapies that rely on 5-HT(1A) receptor activity.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp