Genetic modifiers of MeCP2 function in Drosophila
- PMID:18773074
- PMCID: PMC2518867
- DOI: 10.1371/journal.pgen.1000179
Genetic modifiers of MeCP2 function in Drosophila
Abstract
The levels of methyl-CpG-binding protein 2 (MeCP2) are critical for normal post-natal development and function of the nervous system. Loss of function of MeCP2, a transcriptional regulator involved in chromatin remodeling, causes classic Rett syndrome (RTT) as well as other related conditions characterized by autism, learning disabilities, or mental retardation. Increased dosage of MeCP2 also leads to clinically similar neurological disorders and mental retardation. To identify molecular mechanisms capable of compensating for altered MeCP2 levels, we generated transgenic Drosophila overexpressing human MeCP2. We find that MeCP2 associates with chromatin and is phosphorylated at serine 423 in Drosophila, as is found in mammals. MeCP2 overexpression leads to anatomical (i.e., disorganized eyes, ectopic wing veins) and behavioral (i.e., motor dysfunction) abnormalities. We used a candidate gene approach to identify genes that are able to compensate for abnormal phenotypes caused by MeCP2 increased activity. These genetic modifiers include other chromatin remodeling genes (Additional sex combs, corto, osa, Sex combs on midleg, and trithorax), the kinase tricornered, the UBE3A target pebble, and Drosophila homologues of the MeCP2 physical interactors Sin3a, REST, and N-CoR. These findings demonstrate that anatomical and behavioral phenotypes caused by MeCP2 activity can be ameliorated by altering other factors that might be more amenable to manipulation than MeCP2 itself.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures





Similar articles
- Drosophila as a model for MECP2 gain of function in neurons.Vonhoff F, Williams A, Ryglewski S, Duch C.Vonhoff F, et al.PLoS One. 2012;7(2):e31835. doi: 10.1371/journal.pone.0031835. Epub 2012 Feb 21.PLoS One. 2012.PMID:22363746Free PMC article.
- MeCP2 dysfunction in Rett syndrome and related disorders.Moretti P, Zoghbi HY.Moretti P, et al.Curr Opin Genet Dev. 2006 Jun;16(3):276-81. doi: 10.1016/j.gde.2006.04.009. Epub 2006 May 2.Curr Opin Genet Dev. 2006.PMID:16647848Review.
- Ube3a/E6AP is involved in a subset of MeCP2 functions.Kim S, Chahrour M, Ben-Shachar S, Lim J.Kim S, et al.Biochem Biophys Res Commun. 2013 Jul 19;437(1):67-73. doi: 10.1016/j.bbrc.2013.06.036. Epub 2013 Jun 19.Biochem Biophys Res Commun. 2013.PMID:23791832
- Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.Sztainberg Y, Chen HM, Swann JW, Hao S, Tang B, Wu Z, Tang J, Wan YW, Liu Z, Rigo F, Zoghbi HY.Sztainberg Y, et al.Nature. 2015 Dec 3;528(7580):123-6. doi: 10.1038/nature16159. Epub 2015 Nov 25.Nature. 2015.PMID:26605526Free PMC article.
- MeCP2 phosphorylation in the brain: from transcription to behavior.Damen D, Heumann R.Damen D, et al.Biol Chem. 2013 Dec;394(12):1595-605. doi: 10.1515/hsz-2013-0193.Biol Chem. 2013.PMID:23912219Review.
Cited by
- Corepressors, nuclear receptors, and epigenetic factors on DNA: a tail of repression.Auger AP, Jessen HM.Auger AP, et al.Psychoneuroendocrinology. 2009 Dec;34 Suppl 1(Suppl 1):S39-47. doi: 10.1016/j.psyneuen.2009.05.012.Psychoneuroendocrinology. 2009.PMID:19545950Free PMC article.
- Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2).Tanaka Y, Kim KY, Zhong M, Pan X, Weissman SM, Park IH.Tanaka Y, et al.Hum Mol Genet. 2014 Feb 15;23(4):1045-55. doi: 10.1093/hmg/ddt500. Epub 2013 Oct 15.Hum Mol Genet. 2014.PMID:24129406Free PMC article.
- Drosophila as a model for MECP2 gain of function in neurons.Vonhoff F, Williams A, Ryglewski S, Duch C.Vonhoff F, et al.PLoS One. 2012;7(2):e31835. doi: 10.1371/journal.pone.0031835. Epub 2012 Feb 21.PLoS One. 2012.PMID:22363746Free PMC article.
- Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders.Kim T, Song B, Lee IS.Kim T, et al.Int J Mol Sci. 2020 Jul 9;21(14):4859. doi: 10.3390/ijms21144859.Int J Mol Sci. 2020.PMID:32660023Free PMC article.Review.
- Transactivation in Drosophila of human enhancers by human transcription factors involved in congenital heart diseases.Amodio V, Tevy MF, Traina C, Ghosh TK, Capovilla M.Amodio V, et al.Dev Dyn. 2012 Jan;241(1):190-9. doi: 10.1002/dvdy.22763. Epub 2011 Oct 11.Dev Dyn. 2012.PMID:21990232Free PMC article.
References
- Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron. 2007;56:422–437. - PubMed
- Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–188. - PubMed
- Carney RM, Wolpert CM, Ravan SA, Shahbazian M, Ashley-Koch A, et al. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr Neurol. 2003;28:205–211. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
- F31 GM067501/GM/NIGMS NIH HHS/United States
- R00 NS058391/NS/NINDS NIH HHS/United States
- NS057819/NS/NINDS NIH HHS/United States
- R01 NS057819/NS/NINDS NIH HHS/United States
- R00 NS058391-03/NS/NINDS NIH HHS/United States
- P30 HD024064/HD/NICHD NIH HHS/United States
- K99 NS058391/NS/NINDS NIH HHS/United States
- R01 NS042179/NS/NINDS NIH HHS/United States
- NS042179/NS/NINDS NIH HHS/United States
- R56 NS042179/NS/NINDS NIH HHS/United States
- K99 NS058391-01/NS/NINDS NIH HHS/United States
- K99 NS058391-02/NS/NINDS NIH HHS/United States
- 1 F31 GM067501-01A1/GM/NIGMS NIH HHS/United States
- HHMI/Howard Hughes Medical Institute/United States
- HD024064/HD/NICHD NIH HHS/United States
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous