Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Share

.2008 Aug 21;454(7207):981-3.
doi: 10.1038/nature07194.

Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters

Affiliations

Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters

Mark Turner et al. Nature..

Abstract

Supported gold nanoparticles have excited much interest owing to their unusual and somewhat unexpected catalytic properties, but the origin of the catalytic activity is still not fully understood. Experimental work on gold particles supported on a titanium dioxide (110) single-crystal surface has established a striking size threshold effect associated with a metal-to-insulator transition, with gold particles catalytically active only if their diameters fall below approximately 3.5 nm. However, the remarkable catalytic behaviour might also in part arise from strong electronic interaction between the gold and the titanium dioxide support. In the case of industrially important selective oxidation reactions, explanation of the effectiveness of gold nanoparticle catalysts is complicated by the need for additives to drive the reaction, and/or the presence of strong support interactions and incomplete understanding of their possible catalytic role. Here we show that very small gold entities ( approximately 1.4 nm) derived from 55-atom gold clusters and supported on inert materials are efficient and robust catalysts for the selective oxidation of styrene by dioxygen. We find a sharp size threshold in catalytic activity, in that particles with diameters of approximately 2 nm and above are completely inactive. Our observations suggest that catalytic activity arises from the altered electronic structure intrinsic to small gold nanoparticles, and that the use of 55-atom gold clusters may prove a viable route to the synthesis of robust gold catalysts suited to practical application.

PubMed Disclaimer

Comment in

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

Related information

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp