Biologic properties and enucleation of red blood cells from human embryonic stem cells
- PMID:18713948
- PMCID: PMC2597123
- DOI: 10.1182/blood-2008-05-157198
Biologic properties and enucleation of red blood cells from human embryonic stem cells
Abstract
Human erythropoiesis is a complex multistep process that involves the differentiation of early erythroid progenitors to mature erythrocytes. Here we show that it is feasible to differentiate and mature human embryonic stem cells (hESCs) into functional oxygen-carrying erythrocytes on a large scale (10(10)-10(11) cells/6-well plate hESCs). We also show for the first time that the oxygen equilibrium curves of the hESC-derived cells are comparable with normal red blood cells and respond to changes in pH and 2,3-diphosphoglyerate. Although these cells mainly expressed fetal and embryonic globins, they also possessed the capacity to express the adult beta-globin chain on further maturation in vitro. Polymerase chain reaction and globin chain specific immunofluorescent analysis showed that the cells increased expression of beta-globin (from 0% to > 16%) after in vitro culture. Importantly, the cells underwent multiple maturation events, including a progressive decrease in size, increase in glycophorin A expression, and chromatin and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to more than 60% of the cells generating red blood cells with a diameter of approximately 6 to 8 mum. The results show that it is feasible to differentiate and mature hESCs into functional oxygen-carrying erythrocytes on a large scale.
Figures





Comment in
- Trisomy 21 tilts the balance.Izraeli S.Izraeli S.Blood. 2008 Dec 1;112(12):4361-2. doi: 10.1182/blood-2008-09-176719.Blood. 2008.PMID:19029447No abstract available.
Similar articles
- In vitro large scale production of human mature red blood cells from hematopoietic stem cells by coculturing with human fetal liver stromal cells.Xi J, Li Y, Wang R, Wang Y, Nan X, He L, Zhang P, Chen L, Yue W, Pei X.Xi J, et al.Biomed Res Int. 2013;2013:807863. doi: 10.1155/2013/807863. Epub 2013 Jan 30.Biomed Res Int. 2013.PMID:23484161Free PMC article.Clinical Trial.
- Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis.Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, Zaike Y, Tsuchida E, Nakahata T, Nakauchi H, Tsuji K.Ma F, et al.Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13087-92. doi: 10.1073/pnas.0802220105. Epub 2008 Aug 28.Proc Natl Acad Sci U S A. 2008.PMID:18755895Free PMC article.
- Generation of red blood cells from human induced pluripotent stem cells.Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, Slukvin II.Dias J, et al.Stem Cells Dev. 2011 Sep;20(9):1639-47. doi: 10.1089/scd.2011.0078. Epub 2011 May 11.Stem Cells Dev. 2011.PMID:21434814Free PMC article.
- From stem cells to red blood cells: how far away from the clinical application?Xie X, Li Y, Pei X.Xie X, et al.Sci China Life Sci. 2014 Jun;57(6):581-5. doi: 10.1007/s11427-014-4667-5. Epub 2014 May 15.Sci China Life Sci. 2014.PMID:24829108Review.
- Ontogeny of erythropoiesis.Palis J.Palis J.Curr Opin Hematol. 2008 May;15(3):155-61. doi: 10.1097/MOH.0b013e3282f97ae1.Curr Opin Hematol. 2008.PMID:18391778Review.
Cited by
- Iron dose-dependent differentiation and enucleation of human erythroblasts in serum-free medium.Byrnes C, Lee YT, Meier ER, Rabel A, Sacks DB, Miller JL.Byrnes C, et al.J Tissue Eng Regen Med. 2016 Feb;10(2):E84-9. doi: 10.1002/term.1743. Epub 2013 Apr 18.J Tissue Eng Regen Med. 2016.PMID:23606586Free PMC article.
- Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model.Kobari L, Yates F, Oudrhiri N, Francina A, Kiger L, Mazurier C, Rouzbeh S, El-Nemer W, Hebert N, Giarratana MC, François S, Chapel A, Lapillonne H, Luton D, Bennaceur-Griscelli A, Douay L.Kobari L, et al.Haematologica. 2012 Dec;97(12):1795-803. doi: 10.3324/haematol.2011.055566. Epub 2012 Jun 24.Haematologica. 2012.PMID:22733021Free PMC article.
- Generation of mature hematopoietic cells from human pluripotent stem cells.Togarrati PP, Suknuntha K.Togarrati PP, et al.Int J Hematol. 2012 Jun;95(6):617-23. doi: 10.1007/s12185-012-1094-x. Epub 2012 May 31.Int J Hematol. 2012.PMID:22648826Review.
- Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming.Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I.Zhang X, et al.Oncogene. 2013 May 2;32(18):2249-60, 2260.e1-21. doi: 10.1038/onc.2012.237. Epub 2012 Jul 9.Oncogene. 2013.PMID:22777357Free PMC article.
- In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase.Gori JL, Tian X, Swanson D, Gunther R, Shultz LD, McIvor RS, Kaufman DS.Gori JL, et al.Gene Ther. 2010 Feb;17(2):238-49. doi: 10.1038/gt.2009.131. Epub 2009 Oct 15.Gene Ther. 2010.PMID:19829316Free PMC article.
References
- Lu S-J, Li F, Vida L, Honig GR. CD34+CD38- hematopoietic precursors derived from human embryonic stem cells exhibit an embryonic gene expression pattern. Blood. 2004;103:4134–4141. - PubMed
- Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005;105:617–626. - PubMed
- Chadwick K, Wang L, Li L, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003;102:906–915. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials