Spreading dead zones and consequences for marine ecosystems
- PMID:18703733
- DOI: 10.1126/science.1156401
Spreading dead zones and consequences for marine ecosystems
Abstract
Dead zones in the coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning. The formation of dead zones has been exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels. Enhanced primary production results in an accumulation of particulate organic matter, which encourages microbial activity and the consumption of dissolved oxygen in bottom waters. Dead zones have now been reported from more than 400 systems, affecting a total area of more than 245,000 square kilometers, and are probably a key stressor on marine ecosystems.
Similar articles
- Suffocating seas. Climate change may be sparking new and bigger "dead zones".Juncosa B.Juncosa B.Sci Am. 2008 Oct;299(4):20, 22.Sci Am. 2008.PMID:18847077No abstract available.
- Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf.Naqvi SW, Jayakumar DA, Narvekar PV, Naik H, Sarma VV, D'Souza W, Joseph S, George MD.Naqvi SW, et al.Nature. 2000 Nov 16;408(6810):346-9. doi: 10.1038/35042551.Nature. 2000.PMID:11099038
- Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific.Ware DM, Thomson RE.Ware DM, et al.Science. 2005 May 27;308(5726):1280-4. doi: 10.1126/science.1109049. Epub 2005 Apr 21.Science. 2005.PMID:15845876
- Climate change and dead zones.Altieri AH, Gedan KB.Altieri AH, et al.Glob Chang Biol. 2015 Apr;21(4):1395-406. doi: 10.1111/gcb.12754. Epub 2014 Nov 10.Glob Chang Biol. 2015.PMID:25385668Review.
- Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide.Borja A, Bricker SB, Dauer DM, Demetriades NT, Ferreira JG, Forbes AT, Hutchings P, Jia X, Kenchington R, Carlos Marques J, Zhu C.Borja A, et al.Mar Pollut Bull. 2008 Sep;56(9):1519-37. doi: 10.1016/j.marpolbul.2008.07.005. Epub 2008 Aug 19.Mar Pollut Bull. 2008.PMID:18715596Review.
Cited by
- Ecology: The big picture of marsh loss.Pennings SC.Pennings SC.Nature. 2012 Oct 18;490(7420):352-3. doi: 10.1038/490352a.Nature. 2012.PMID:23075984No abstract available.
- Is aquaporin-3 involved in water-permeability changes in the killifish during hypoxia and normoxic recovery, in freshwater or seawater?Ruhr IM, Wood CM, Schauer KL, Wang Y, Mager EM, Stanton B, Grosell M.Ruhr IM, et al.J Exp Zool A Ecol Integr Physiol. 2020 Aug;333(7):511-525. doi: 10.1002/jez.2393. Epub 2020 Jun 17.J Exp Zool A Ecol Integr Physiol. 2020.PMID:32548921Free PMC article.
- Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates.Zhang H, Wang Q, Zhang W, Havlin S, Gao J.Zhang H, et al.Nat Ecol Evol. 2022 Oct;6(10):1524-1536. doi: 10.1038/s41559-022-01850-8. Epub 2022 Aug 29.Nat Ecol Evol. 2022.PMID:36038725
- Quantifying the impacts of stratification and nutrient loading on hypoxia in the northern Gulf of Mexico.Obenour DR, Michalak AM, Zhou Y, Scavia D.Obenour DR, et al.Environ Sci Technol. 2012 May 15;46(10):5489-96. doi: 10.1021/es204481a. Epub 2012 May 1.Environ Sci Technol. 2012.PMID:22506901Free PMC article.
- Interactive effects of temperature, cadmium, and hypoxia on rainbow trout(Oncorhynchus mykiss) liver mitochondrial bioenergetics.Onukwufor JO, Kamunde C.Onukwufor JO, et al.bioRxiv [Preprint]. 2024 Jul 16:2024.07.15.603625. doi: 10.1101/2024.07.15.603625.bioRxiv. 2024.Update in:Ecotoxicol Environ Saf. 2025 Jan 1;289:117450. doi: 10.1016/j.ecoenv.2024.117450.PMID:39071258Free PMC article.Updated.Preprint.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources