Methanogenic archaea: ecologically relevant differences in energy conservation
- PMID:18587410
- DOI: 10.1038/nrmicro1931
Methanogenic archaea: ecologically relevant differences in energy conservation
Abstract
Most methanogenic archaea can reduce CO(2) with H(2) to methane, and it is generally assumed that the reactions and mechanisms of energy conservation that are involved are largely the same in all methanogens. However, this does not take into account the fact that methanogens with cytochromes have considerably higher growth yields and threshold concentrations for H(2) than methanogens without cytochromes. These and other differences can be explained by the proposal outlined in this Review that in methanogens with cytochromes, the first and last steps in methanogenesis from CO(2) are coupled chemiosmotically, whereas in methanogens without cytochromes, these steps are energetically coupled by a cytoplasmic enzyme complex that mediates flavin-based electron bifurcation.
Similar articles
- Higher-level classification of the Archaea: evolution of methanogenesis and methanogens.Bapteste E, Brochier C, Boucher Y.Bapteste E, et al.Archaea. 2005 May;1(5):353-63. doi: 10.1155/2005/859728.Archaea. 2005.PMID:15876569Free PMC article.
- A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene.Mihajlovski A, Alric M, Brugère JF.Mihajlovski A, et al.Res Microbiol. 2008 Sep-Oct;159(7-8):516-21. doi: 10.1016/j.resmic.2008.06.007. Epub 2008 Jul 2.Res Microbiol. 2008.PMID:18644435
- Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea.Friedrich MW.Friedrich MW.Methods Enzymol. 2005;397:428-42. doi: 10.1016/S0076-6879(05)97026-2.Methods Enzymol. 2005.PMID:16260307
- Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea.Liu Y, Whitman WB.Liu Y, et al.Ann N Y Acad Sci. 2008 Mar;1125:171-89. doi: 10.1196/annals.1419.019.Ann N Y Acad Sci. 2008.PMID:18378594Review.
- Evolution of Na(+) and H(+) bioenergetics in methanogenic archaea.Schlegel K, Müller V.Schlegel K, et al.Biochem Soc Trans. 2013 Feb 1;41(1):421-6. doi: 10.1042/BST20120294.Biochem Soc Trans. 2013.PMID:23356322Review.
Cited by
- Hydrochemical gradients driving extremophile distribution in saline and brine groundwater of southern Poland.Słowakiewicz M, Goraj W, Segit T, Wątor K, Dobrzyński D.Słowakiewicz M, et al.Environ Microbiol Rep. 2024 Oct;16(5):e70030. doi: 10.1111/1758-2229.70030.Environ Microbiol Rep. 2024.PMID:39440899Free PMC article.
- Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis.Richards MA, Lie TJ, Zhang J, Ragsdale SW, Leigh JA, Price ND.Richards MA, et al.J Bacteriol. 2016 Nov 18;198(24):3379-3390. doi: 10.1128/JB.00571-16. Print 2016 Dec 15.J Bacteriol. 2016.PMID:27736793Free PMC article.
- Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia.Vuillemin A, Friese A, Alawi M, Henny C, Nomosatryo S, Wagner D, Crowe SA, Kallmeyer J.Vuillemin A, et al.Front Microbiol. 2016 Jun 30;7:1007. doi: 10.3389/fmicb.2016.01007. eCollection 2016.Front Microbiol. 2016.PMID:27446046Free PMC article.
- Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration.Liu JF, Sun XB, Yang GC, Mbadinga SM, Gu JD, Mu BZ.Liu JF, et al.Front Microbiol. 2015 Mar 31;6:236. doi: 10.3389/fmicb.2015.00236. eCollection 2015.Front Microbiol. 2015.PMID:25873911Free PMC article.
- Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.van Lingen HJ, Plugge CM, Fadel JG, Kebreab E, Bannink A, Dijkstra J.van Lingen HJ, et al.PLoS One. 2016 Oct 26;11(10):e0161362. doi: 10.1371/journal.pone.0161362. eCollection 2016.PLoS One. 2016.PMID:27783615Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases