Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Share

.2008 Jul;5(7):613-9.
doi: 10.1038/nmeth.1223. Epub 2008 May 30.

Stem cell transcriptome profiling via massive-scale mRNA sequencing

Affiliations

Stem cell transcriptome profiling via massive-scale mRNA sequencing

Nicole Cloonan et al. Nat Methods.2008 Jul.

Abstract

We developed a massive-scale RNA sequencing protocol, short quantitative random RNA libraries or SQRL, to survey the complexity, dynamics and sequence content of transcriptomes in a near-complete fashion. This method generates directional, random-primed, linear cDNA libraries that are optimized for next-generation short-tag sequencing. We surveyed the poly(A)(+) transcriptomes of undifferentiated mouse embryonic stem cells (ESCs) and embryoid bodies (EBs) at an unprecedented depth (10 Gb), using the Applied Biosystems SOLiD technology. These libraries capture the genomic landscape of expression, state-specific expression, single-nucleotide polymorphisms (SNPs), the transcriptional activity of repeat elements, and both known and new alternative splicing events. We investigated the impact of transcriptional complexity on current models of key signaling pathways controlling ESC pluripotency and differentiation, highlighting how SQRL can be used to characterize transcriptome content and dynamics in a quantitative and reproducible manner, and suggesting that our understanding of transcriptional complexity is far from complete.

PubMed Disclaimer

Comment in

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Associated data

Related information

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp