Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10
- PMID:18337592
- PMCID: PMC5419535
- DOI: 10.1210/me.2007-0112
Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10
Abstract
Cellular entry of thyroid hormone is mediated by plasma membrane transporters, among others a T-type (aromatic) amino acid transporter. Monocarboxylate transporter 10 (MCT10) has been reported to transport aromatic amino acids but not iodothyronines. Within the MCT family, MCT10 is most homologous to MCT8, which is a very important iodothyronine transporter but does not transport amino acids. In view of this paradox, we decided to reinvestigate the possible transport of thyroid hormone by human (h) MCT10 in comparison with hMCT8. Transfection of COS1 cells with hMCT10 cDNA resulted in 1) the production of an approximately 55 kDa protein located to the plasma membrane as shown by immunoblotting and confocal microscopy, 2) a strong increase in the affinity labeling of intracellular type I deiodinase by N-bromoacetyl-[(125)I]T(3), 3) a marked stimulation of cellular T(4) and, particularly, T(3) uptake, 4) a significant inhibition of T(3) uptake by phenylalanine, tyrosine, and tryptophan of 12.5%, 22.2%, and 51.4%, respectively, and 5) a marked increase in the intracellular deiodination of T(4) and T(3) by different deiodinases. Cotransfection studies using the cytosolic thyroid hormone-binding protein micro-crystallin (CRYM) indicated that hMCT10 facilitates both cellular uptake and efflux of T(4) and T(3). In the absence of CRYM, hMCT10 and hMCT8 increased T(3) uptake after 5 min incubation up to 4.0- and 1.9-fold, and in the presence of CRYM up to 6.9- and 5.8-fold, respectively. hMCT10 was less active toward T(4) than hMCT8. These findings establish that hMCT10 is at least as active a thyroid hormone transporter as hMCT8, and that both transporters facilitate iodothyronine uptake as well as efflux.
Figures












Similar articles
- Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism.Friesema EC, Kuiper GG, Jansen J, Visser TJ, Kester MH.Friesema EC, et al.Mol Endocrinol. 2006 Nov;20(11):2761-72. doi: 10.1210/me.2005-0256. Epub 2006 Aug 3.Mol Endocrinol. 2006.PMID:16887882
- The thyroid hormone transporters MCT8 and MCT10 transport the affinity-label N-bromoacetyl-[(125)I]T3 but are not modified by it.Visser WE, van Mullem AA, Jansen J, Visser TJ.Visser WE, et al.Mol Cell Endocrinol. 2011 Apr 30;337(1-2):96-100. doi: 10.1016/j.mce.2011.02.003. Epub 2011 Feb 18.Mol Cell Endocrinol. 2011.PMID:21315799
- Thyroid Hormone Transporters in a Human Placental Cell Model.Chen Z, van der Sman ASE, Groeneweg S, de Rooij LJ, Visser WE, Peeters RP, Meima ME.Chen Z, et al.Thyroid. 2022 Sep;32(9):1129-1137. doi: 10.1089/thy.2021.0503. Epub 2022 Jul 11.Thyroid. 2022.PMID:35699060Free PMC article.
- Thyroid hormone transport by monocarboxylate transporters.Visser WE, Friesema EC, Jansen J, Visser TJ.Visser WE, et al.Best Pract Res Clin Endocrinol Metab. 2007 Jun;21(2):223-36. doi: 10.1016/j.beem.2007.03.008.Best Pract Res Clin Endocrinol Metab. 2007.PMID:17574005Review.
- Thyroid hormone transporters.Friesema EC, Jansen J, Milici C, Visser TJ.Friesema EC, et al.Vitam Horm. 2005;70:137-67. doi: 10.1016/S0083-6729(05)70005-4.Vitam Horm. 2005.PMID:15727804Review.
Cited by
- Zebrafish as a model for monocarboxyl transporter 8-deficiency.Vatine GD, Zada D, Lerer-Goldshtein T, Tovin A, Malkinson G, Yaniv K, Appelbaum L.Vatine GD, et al.J Biol Chem. 2013 Jan 4;288(1):169-80. doi: 10.1074/jbc.M112.413831. Epub 2012 Nov 16.J Biol Chem. 2013.PMID:23161551Free PMC article.
- Novel mutations in SLC16A2 associated with a less severe phenotype of MCT8 deficiency.Masnada S, Groenweg S, Saletti V, Chiapparini L, Castellotti B, Salsano E, Visser WE, Tonduti D.Masnada S, et al.Metab Brain Dis. 2019 Dec;34(6):1565-1575. doi: 10.1007/s11011-019-00464-7. Epub 2019 Jul 22.Metab Brain Dis. 2019.PMID:31332729
- Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms After Stroke.Talhada D, Santos CRA, Gonçalves I, Ruscher K.Talhada D, et al.Front Neurol. 2019 Oct 18;10:1103. doi: 10.3389/fneur.2019.01103. eCollection 2019.Front Neurol. 2019.PMID:31681160Free PMC article.Review.
- Regulation of T3 Availability in the Developing Brain: The Mouse Genetics Contribution.Richard S, Flamant F.Richard S, et al.Front Endocrinol (Lausanne). 2018 May 28;9:265. doi: 10.3389/fendo.2018.00265. eCollection 2018.Front Endocrinol (Lausanne). 2018.PMID:29892264Free PMC article.Review.
- In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency.Kersseboom S, Horn S, Visser WE, Chen J, Friesema EC, Vaurs-Barrière C, Peeters RP, Heuer H, Visser TJ.Kersseboom S, et al.Mol Endocrinol. 2014 Dec;28(12):1961-70. doi: 10.1210/me.2014-1135.Mol Endocrinol. 2014.PMID:25389909Free PMC article.
References
- Yen PM 2001. Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142 - PubMed
- Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR 2002. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89 - PubMed
- Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ 2001. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22:451–476 - PubMed
- Friesema EC, Jansen J, Milici C, Visser TJ 2005. Thyroid hormone transporters. Vitam Horm 70:137–167 - PubMed
- Jansen J, Friesema EC, Milici C, Visser TJ 2005. Thyroid hormone transporters in health and disease. Thyroid 15:757–768 - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous