Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa
- PMID:18323537
- PMCID: PMC2279245
- DOI: 10.1101/gr.6897308
Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa
Abstract
The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, approximately 21- and approximately 24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/.
Figures




Similar articles
- Clusters and superclusters of phased small RNAs in the developing inflorescence of rice.Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, Walbot V, Sundaresan V, Vance V, Bowman LH.Johnson C, et al.Genome Res. 2009 Aug;19(8):1429-40. doi: 10.1101/gr.089854.108. Epub 2009 Jul 7.Genome Res. 2009.PMID:19584097Free PMC article.
- Diversity of endogenous small non-coding RNAs in Oryza sativa.Chen Z, Zhang J, Kong J, Li S, Fu Y, Li S, Zhang H, Li Y, Zhu Y.Chen Z, et al.Genetica. 2006 Sep-Nov;128(1-3):21-31. doi: 10.1007/s10709-005-2486-0.Genetica. 2006.PMID:17028937
- Computational identification of plant microRNAs and their targets, including a stress-induced miRNA.Jones-Rhoades MW, Bartel DP.Jones-Rhoades MW, et al.Mol Cell. 2004 Jun 18;14(6):787-99. doi: 10.1016/j.molcel.2004.05.027.Mol Cell. 2004.PMID:15200956
- Biogenesis and function of rice small RNAs from non-coding RNA precursors.Arikit S, Zhai J, Meyers BC.Arikit S, et al.Curr Opin Plant Biol. 2013 May;16(2):170-9. doi: 10.1016/j.pbi.2013.01.006. Epub 2013 Mar 1.Curr Opin Plant Biol. 2013.PMID:23466255Review.
- The small RNA world of plants.Bonnet E, Van de Peer Y, Rouzé P.Bonnet E, et al.New Phytol. 2006;171(3):451-68. doi: 10.1111/j.1469-8137.2006.01806.x.New Phytol. 2006.PMID:16866953Review.
Cited by
- Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing.Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S.Chi X, et al.PLoS One. 2011;6(11):e27530. doi: 10.1371/journal.pone.0027530. Epub 2011 Nov 16.PLoS One. 2011.PMID:22110666Free PMC article.
- A transgenic transcription factor (TaDREB3) in barley affects the expression of microRNAs and other small non-coding RNAs.Hackenberg M, Shi BJ, Gustafson P, Langridge P.Hackenberg M, et al.PLoS One. 2012;7(8):e42030. doi: 10.1371/journal.pone.0042030. Epub 2012 Aug 1.PLoS One. 2012.PMID:22870277Free PMC article.
- Characterization and comparative analysis of small RNAs in three small RNA libraries of the brown planthopper (Nilaparvata lugens).Chen Q, Lu L, Hua H, Zhou F, Lu L, Lin Y.Chen Q, et al.PLoS One. 2012;7(3):e32860. doi: 10.1371/journal.pone.0032860. Epub 2012 Mar 6.PLoS One. 2012.PMID:22412935Free PMC article.
- Identification of conserved and novel microRNAs from Liriodendron chinense floral tissues.Wang K, Li M, Gao F, Li S, Zhu Y, Yang P.Wang K, et al.PLoS One. 2012;7(9):e44696. doi: 10.1371/journal.pone.0044696. Epub 2012 Sep 18.PLoS One. 2012.PMID:23028583Free PMC article.
- Complete characterization of the microRNAome in a patient with acute myeloid leukemia.Ramsingh G, Koboldt DC, Trissal M, Chiappinelli KB, Wylie T, Koul S, Chang LW, Nagarajan R, Fehniger TA, Goodfellow P, Magrini V, Wilson RK, Ding L, Ley TJ, Mardis ER, Link DC.Ramsingh G, et al.Blood. 2010 Dec 9;116(24):5316-26. doi: 10.1182/blood-2010-05-285395. Epub 2010 Sep 28.Blood. 2010.PMID:20876853Free PMC article.
References
- Ambros V., Bartel B., Bartel D.P., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., Bartel B., Bartel D.P., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., Bartel D.P., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., Eddy S.R., Griffiths-Jones S., Marshall M., Griffiths-Jones S., Marshall M., Marshall M., et al. A uniform system for microRNA annotation. RNA. 2003;9:277–279. - PMC - PubMed
- Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. - PubMed
- Bonnet E., Wuyts J., Rouze P., de Peer Y.V., Wuyts J., Rouze P., de Peer Y.V., Rouze P., de Peer Y.V., de Peer Y.V. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc. Natl. Acad. Sci. 2004;101:11511–11516. - PMC - PubMed
- Borsani O., Zhu J., Verslues P.E., Sunkar R., Zhu J.K., Zhu J., Verslues P.E., Sunkar R., Zhu J.K., Verslues P.E., Sunkar R., Zhu J.K., Sunkar R., Zhu J.K., Zhu J.K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005;123:1279–1291. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials