Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Atypon full text link Atypon
Full text links

Actions

.2008 Apr;294(4):C1074-8.
doi: 10.1152/ajpcell.00504.2007. Epub 2008 Feb 27.

Role of glutamate residues in substrate recognition by human MATE1 polyspecific H+/organic cation exporter

Affiliations
Free article

Role of glutamate residues in substrate recognition by human MATE1 polyspecific H+/organic cation exporter

Takuya Matsumoto et al. Am J Physiol Cell Physiol.2008 Apr.
Free article

Abstract

Human multidrug and toxic compound extrusion 1 (hMATE1) is an electroneutral H(+)/organic cation exchanger responsible for the final excretion step of structurally unrelated toxic organic cations in kidney and liver. To elucidate the molecular basis of the substrate recognition by hMATE1, we substituted the glutamate residues Glu273, Glu278, Glu300, and Glu389, which are conserved in the transmembrane regions, for alanine or aspartate and examined the transport activities of the resulting mutant proteins using tetraethylammonium (TEA) and cimetidine as substrates after expression in human embryonic kidney 293 (HEK-293) cells. All of these mutants except Glu273Ala were fully expressed and present in the plasma membrane of the HEK-293 cells. TEA transport activity in the mutant Glu278Ala was completely absent. Both Glu300Ala and Glu389Ala and all aspartate mutants exhibited significantly decreased activity. Glu273Asp showed higher affinity for cimetidine, whereas it has reduced affinity to TEA. Glu278Asp showed decreased affinity to cimetidine. Both Glu300Asp and Glu389Asp had lowered affinity to TEA, whereas the affinity of Glu389Asp to cimetidine was fourfold higher than that of the wild-type transporter with about a fourfold decrease in V(max) value. Both Glu273Asp and Glu300Asp had altered pH dependence for TEA uptake. These results suggest that all of these glutamate residues are involved in binding and/or transport of TEA and cimetidine but that their individual roles are different.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Atypon full text link Atypon
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp