Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.2006 Dec;35(4):357-78.
doi: 10.1016/j.asd.2006.08.010.

Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila

Affiliations

Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila

Markus Friedrich. Arthropod Struct Dev.2006 Dec.

Abstract

Key mechanisms of development are strongly constrained, and hence often shared in the formation of highly diversified homologous organs. This diagnostic is applied to uncovering ancient gene activities in the control of visual sense organ development by comparing the gene networks, which regulate larval eye, ocellus and compound eye specification in Drosophila. The comparison reveals a suite of shared aspects that are likely to predate the diversification of arthropod visual sense organs and, consistent with this, have notable similarities in the developing vertebrate visual system: (I) Pax-6 genes participate in the patterning of primordia of complex visual organs. (II) Primordium determination and differentiation depends on formation of a transcription factor complex that contains the products of the selector genes Eyes absent and Sine oculis. (III) The TGF-beta signaling factor Decapentaplegic exerts transcriptional activation of eyes absent and sine oculis. (IV) Canonical Wnt signaling contributes to primordium patterning by repression of eyes absent and sine oculis. (V) Initiation of determination and differentiation is controlled by hedgehog signaling. (VI) Egfr signaling drives retinal cell fate specification. (VII) The proneural transcription factor atonal regulates photoreceptor specification. (VII) The zinc finger gene glass regulates photoreceptor specification and differentiation.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp