Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Actions

.2007;13(4):235-42.
doi: 10.1177/0968051907083193.

The equine TLR4/MD-2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist

Affiliations

The equine TLR4/MD-2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist

Katharina L Lohmann et al. J Endotoxin Res.2007.

Abstract

Lipopolysaccharide (LPS) antagonists inhibit the response of inflammatory cells to LPS, presumably by competitive inhibition, and may be of therapeutic value in the treatment of endotoxemia and sepsis. The inhibitory effects of some LPS antagonists are restricted to certain host species, however, as the same molecules can have significant endotoxic activity in other species. This species-specific recognition appears to be mediated by Toll-like receptor 4 (TLR4) and/or MD-2. We have shown previously that LPS from Rhodobacter sphaeroides ( RsLPS) is an LPS antagonist in human cells but an agonist (or LPS mimetic) in equine cells. In the present study, HEK293 cells were transfected with combinations of human and equine CD14, TLR4 and MD-2, and incubated with either RsLPS or with LPS from Escherichia coli as an endotoxin control. NF-kappaB activation was measured in a dual luciferase assay as an indicator of cellular activation. Our results indicate that E. colic LPS activated NF-kappaB in cells transfected with all combinations of the three receptor proteins, whereas RsLPS activated NF-kappaB only in cells expressing the single combination of equine TLR4 and equine MD-2. We conclude that the TLR4/MD-2 complex is responsible for recognition of RsLPS as an agonist in equine cells.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources

Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp