The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish
- PMID:17907202
- DOI: 10.1002/dvdy.21329
The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish
Abstract
The vertebral column is a defined feature of vertebrates. In birds and mammals, the sclerotome yields cartilaginous material for the vertebral column. In teleosts, however, it remains uncertain whether the sclerotome participates in vertebral column formation. To investigate osteoblast development in the teleost, we established transgenic systems that allow in vivo observation of osteoblasts and their progenitors marked by fluorescence of DsRed and enhanced green fluorescent protein (EGFP), respectively. In twist-EGFP transgenic medaka, EGFP-positive cells first appeared in the ventromedial portion of respective somites corresponding to the sclerotome, migrated dorsally around the notochord, and concentrated in the intervertebral regions. Ultrastructural analysis of the intervertebral regions revealed that some of these cells were directly located on the osteoidal surface of the perichordal centrum, and enriched with rough endoplasmic reticulum in their cytoplasm. By using the double transgenic medaka of twist-EGFP and osteocalcin-DsRed, we clarified that the EGFP-positive cells in the intervertebral region differentiated into mature osteoblasts expressing the DsRed. In vivo bone labeling in fact confirmed active matrix formation and mineralization of the perichordal centrum exclusively in the intervertebral region of zebrafish larvae as well as medaka larvae. These findings strongly suggest that the teleost intervertebral region acts as a growth center of the perichordal centrum, where the sclerotome-derived cells differentiate into osteoblasts.
Copyright 2007 Wiley-Liss, Inc.
Similar articles
- A col10a1:nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization.Renn J, Büttner A, To TT, Chan SJ, Winkler C.Renn J, et al.Dev Biol. 2013 Sep 1;381(1):134-43. doi: 10.1016/j.ydbio.2013.05.030. Epub 2013 Jun 13.Dev Biol. 2013.PMID:23769979
- Twist functions in vertebral column formation in medaka, Oryzias latipes.Yasutake J, Inohaya K, Kudo A.Yasutake J, et al.Mech Dev. 2004 Jul;121(7-8):883-94. doi: 10.1016/j.mod.2004.03.008.Mech Dev. 2004.PMID:15210193
- The sp7 gene is required for maturation of osteoblast-lineage cells in medaka (Oryzias latipes) vertebral column development.Azetsu Y, Inohaya K, Takano Y, Kinoshita M, Tasaki M, Kudo A.Azetsu Y, et al.Dev Biol. 2017 Nov 15;431(2):252-262. doi: 10.1016/j.ydbio.2017.09.010. Epub 2017 Sep 9.Dev Biol. 2017.PMID:28899668
- [Medaka as a model organism of skeletal development].Inohaya K, Kudo A.Inohaya K, et al.Tanpakushitsu Kakusan Koso. 2000 Dec;45(17 Suppl):2745-51.Tanpakushitsu Kakusan Koso. 2000.PMID:11187775Review.Japanese.No abstract available.
- Building the backbone: the development and evolution of vertebral patterning.Fleming A, Kishida MG, Kimmel CB, Keynes RJ.Fleming A, et al.Development. 2015 May 15;142(10):1733-44. doi: 10.1242/dev.118950.Development. 2015.PMID:25968309Review.
Cited by
- Comparative morphology of the osteocyte lacunocanalicular system in various vertebrates.Cao L, Moriishi T, Miyazaki T, Iimura T, Hamagaki M, Nakane A, Tamamura Y, Komori T, Yamaguchi A.Cao L, et al.J Bone Miner Metab. 2011 Nov;29(6):662-70. doi: 10.1007/s00774-011-0268-6. Epub 2011 Apr 19.J Bone Miner Metab. 2011.PMID:21499992
- Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development.Pogoda HM, Riedl-Quinkertz I, Löhr H, Waxman JS, Dale RM, Topczewski J, Schulte-Merker S, Hammerschmidt M.Pogoda HM, et al.Development. 2018 May 8;145(9):dev159418. doi: 10.1242/dev.159418.Development. 2018.PMID:29650589Free PMC article.
- Regeneration of amputated zebrafish fin rays from de novo osteoblasts.Singh SP, Holdway JE, Poss KD.Singh SP, et al.Dev Cell. 2012 Apr 17;22(4):879-86. doi: 10.1016/j.devcel.2012.03.006.Dev Cell. 2012.PMID:22516203Free PMC article.
- Discovery of a Small Molecule Promoting Mouse and Human Osteoblast Differentiation via Activation of p38 MAPK-β.Cook B, Rafiq R, Lee H, Banks KM, El-Debs M, Chiaravalli J, Glickman JF, Das BC, Chen S, Evans T.Cook B, et al.Cell Chem Biol. 2019 Jul 18;26(7):926-935.e6. doi: 10.1016/j.chembiol.2019.03.009. Epub 2019 Apr 25.Cell Chem Biol. 2019.PMID:31031140Free PMC article.
- Hyperglycosylation as an Indicator of Aging in the Bone Metabolome ofOryzias latipes.Labeille RO, Elliott J, Abdulla H, Seemann F.Labeille RO, et al.Metabolites. 2024 Sep 27;14(10):525. doi: 10.3390/metabo14100525.Metabolites. 2024.PMID:39452906Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials