A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells
- PMID:17906286
- DOI: 10.1093/hmg/ddm285
A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells
Abstract
The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic analyses disclosed the colocalization of all network components in the apical inner segment collar and the ciliary apparatus of mammalian photoreceptor cells. In this complex, whirlin and SANS directly interact. Furthermore, SANS provides a linkage to the microtubule transport machinery, whereas whirlin may anchor USH2A isoform b and VLGR1b (very large G-protein coupled receptor 1b) via binding to their cytodomains at specific membrane domains. The long ectodomains of both transmembrane proteins extend into the gap between the adjacent membranes of the connecting cilium and the apical inner segment. Analyses of Vlgr1/del7TM mice revealed the ectodomain of VLGR1b as a component of fibrous links present in this gap. Comparative analyses of mouse and Xenopus photoreceptors demonstrated that this USH protein network is also part of the periciliary ridge complex in Xenopus. Since this structural specialization in amphibian photoreceptor cells defines a specialized membrane domain for docking and fusion of transport vesicles, we suggest a prominent role of the USH proteins in cargo shipment.
Similar articles
- Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease.Reiners J, Nagel-Wolfrum K, Jürgens K, Märker T, Wolfrum U.Reiners J, et al.Exp Eye Res. 2006 Jul;83(1):97-119. doi: 10.1016/j.exer.2005.11.010. Epub 2006 Mar 20.Exp Eye Res. 2006.PMID:16545802Review.
- Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.Reiners J, van Wijk E, Märker T, Zimmermann U, Jürgens K, te Brinke H, Overlack N, Roepman R, Knipper M, Kremer H, Wolfrum U.Reiners J, et al.Hum Mol Genet. 2005 Dec 15;14(24):3933-43. doi: 10.1093/hmg/ddi417. Epub 2005 Nov 21.Hum Mol Genet. 2005.PMID:16301216
- Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.Sorusch N, Bauß K, Plutniok J, Samanta A, Knapp B, Nagel-Wolfrum K, Wolfrum U.Sorusch N, et al.Hum Mol Genet. 2017 Mar 15;26(6):1157-1172. doi: 10.1093/hmg/ddx027.Hum Mol Genet. 2017.PMID:28137943
- Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina.Overlack N, Kilic D, Bauss K, Märker T, Kremer H, van Wijk E, Wolfrum U.Overlack N, et al.Biochim Biophys Acta. 2011 Oct;1813(10):1883-92. doi: 10.1016/j.bbamcr.2011.05.015. Epub 2011 Jul 13.Biochim Biophys Acta. 2011.PMID:21767579
- Usher syndrome protein network functions in the retina and their relation to other retinal ciliopathies.Sorusch N, Wunderlich K, Bauss K, Nagel-Wolfrum K, Wolfrum U.Sorusch N, et al.Adv Exp Med Biol. 2014;801:527-33. doi: 10.1007/978-1-4614-3209-8_67.Adv Exp Med Biol. 2014.PMID:24664740Review.
Cited by
- On the Wrong Track: Alterations of Ciliary Transport in Inherited Retinal Dystrophies.Sánchez-Bellver L, Toulis V, Marfany G.Sánchez-Bellver L, et al.Front Cell Dev Biol. 2021 Mar 5;9:623734. doi: 10.3389/fcell.2021.623734. eCollection 2021.Front Cell Dev Biol. 2021.PMID:33748110Free PMC article.Review.
- The mitotic spindle protein SPAG5/Astrin connects to the Usher protein network postmitotically.Kersten FF, van Wijk E, Hetterschijt L, Bauβ K, Peters TA, Aslanyan MG, van der Zwaag B, Wolfrum U, Keunen JE, Roepman R, Kremer H.Kersten FF, et al.Cilia. 2012 Apr 25;1(1):2. doi: 10.1186/2046-2530-1-2.Cilia. 2012.PMID:23351521Free PMC article.
- Pleiotropic brain function of whirlin identified by a novel mutation.Aguilar C, Williams D, Kurapati R, Bains RS, Mburu P, Parker A, Williams J, Concas D, Tateossian H, Haynes AR, Banks G, Vikhe P, Heise I, Hutchison M, Atkins G, Gillard S, Starbuck B, Oliveri S, Blake A, Sethi S, Kumar S, Bardhan T, Jeng JY, Johnson SL, Corns LF, Marcotti W, Simon M, Wells S, Potter PK, Lad HV.Aguilar C, et al.iScience. 2024 Jun 4;27(7):110170. doi: 10.1016/j.isci.2024.110170. eCollection 2024 Jul 19.iScience. 2024.PMID:38974964Free PMC article.
- The role of primary cilia in the development and disease of the retina.Wheway G, Parry DA, Johnson CA.Wheway G, et al.Organogenesis. 2014 Jan 1;10(1):69-85. doi: 10.4161/org.26710. Epub 2013 Oct 25.Organogenesis. 2014.PMID:24162842Free PMC article.Review.
- Accumulation of the Raf-1 kinase inhibitory protein (Rkip) is associated with Cep290-mediated photoreceptor degeneration in ciliopathies.Murga-Zamalloa CA, Ghosh AK, Patil SB, Reed NA, Chan LS, Davuluri S, Peränen J, Hurd TW, Rachel RA, Khanna H.Murga-Zamalloa CA, et al.J Biol Chem. 2011 Aug 12;286(32):28276-86. doi: 10.1074/jbc.M111.237560. Epub 2011 Jun 17.J Biol Chem. 2011.PMID:21685394Free PMC article.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous