Loss of p53 and Ink4a/Arf cooperate in a cell autonomous fashion to induce metastasis of hepatocellular carcinoma cells
- PMID:17699762
- PMCID: PMC2396788
- DOI: 10.1158/0008-5472.CAN-07-0381
Loss of p53 and Ink4a/Arf cooperate in a cell autonomous fashion to induce metastasis of hepatocellular carcinoma cells
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. HCC patients frequently present with disease that has metastasized to other regions of the liver, the portal vein, lymph nodes, or lungs, leading to poor prognoses. Therefore, model systems that allow exploration of the molecular mechanisms underlying metastasis in this disease are greatly needed. We describe here a metastatic HCC model generated after the somatic introduction of the mouse polyoma virus middle T antigen to mice with liver-specific deletion of the Trp53 tumor suppressor locus and show the cell autonomous effect of p53 loss of function on HCC metastasis. We additionally find that cholangiocarcinoma also develops in these mice, and some tumors display features of both HCC and cholangiocarcinoma, suggestive of origin from liver progenitor cells. Concomitant loss of the Ink4a/Arf tumor suppressor locus accelerates tumor formation and metastasis, suggesting potential roles for the p16 and p19 tumor suppressors in this process. Significantly, tumor cell lines isolated from tumors lacking both Trp53 and Ink4a/Arf display enhanced invasion activity in vitro relative to those lacking Trp53 alone. Thus, our data illustrate a new model system amenable for the analysis of HCC metastasis.
Figures





Similar articles
- p53 and p16Ink4a/p19Arf Loss Promotes Different Pancreatic Tumor Types from PyMT-Expressing Progenitor Cells.Azzopardi S, Pang S, Klimstra DS, Du YN.Azzopardi S, et al.Neoplasia. 2016 Oct;18(10):610-617. doi: 10.1016/j.neo.2016.08.003. Epub 2016 Sep 21.Neoplasia. 2016.PMID:27664376Free PMC article.
- The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis.Sharpless NE, Ramsey MR, Balasubramanian P, Castrillon DH, DePinho RA.Sharpless NE, et al.Oncogene. 2004 Jan 15;23(2):379-85. doi: 10.1038/sj.onc.1207074.Oncogene. 2004.PMID:14724566
- Genetic alterations of INK4alpha/ARF locus and p53 in human hepatocellular carcinoma.Peng CY, Chen TC, Hung SP, Chen MF, Yeh CT, Tsai SL, Chu CM, Liaw YF.Peng CY, et al.Anticancer Res. 2002 Mar-Apr;22(2B):1265-71.Anticancer Res. 2002.PMID:12168936
- Genetic dissection of melanoma pathways in the mouse.Yang FC, Merlino G, Chin L.Yang FC, et al.Semin Cancer Biol. 2001 Jun;11(3):261-8. doi: 10.1006/scbi.2000.0376.Semin Cancer Biol. 2001.PMID:11407950Review.
- p53-Dependent and -independent functions of the Arf tumor suppressor.Sherr CJ, Bertwistle D, DEN Besten W, Kuo ML, Sugimoto M, Tago K, Williams RT, Zindy F, Roussel MF.Sherr CJ, et al.Cold Spring Harb Symp Quant Biol. 2005;70:129-37. doi: 10.1101/sqb.2005.70.004.Cold Spring Harb Symp Quant Biol. 2005.PMID:16869746Review.
Cited by
- Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1.Yen YC, Hsiao JR, Jiang SS, Chang JS, Wang SH, Shen YY, Chen CH, Chang IS, Chang JY, Chen YW.Yen YC, et al.Oncotarget. 2015 Dec 8;6(39):41837-55. doi: 10.18632/oncotarget.5995.Oncotarget. 2015.PMID:26540630Free PMC article.
- MicroRNA-Mediated Post-Transcriptional Regulation of Epithelial to Mesenchymal Transition in Cancer.Behbahani GD, Ghahhari NM, Javidi MA, Molan AF, Feizi N, Babashah S.Behbahani GD, et al.Pathol Oncol Res. 2017 Jan;23(1):1-12. doi: 10.1007/s12253-016-0101-6. Epub 2016 Sep 2.Pathol Oncol Res. 2017.PMID:27590333Review.
- p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2.Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A, Palatini J, Suh SS, Alder H, Liu CG, Dejean A, Croce CM.Kim T, et al.J Exp Med. 2011 May 9;208(5):875-83. doi: 10.1084/jem.20110235. Epub 2011 Apr 25.J Exp Med. 2011.PMID:21518799Free PMC article.
- Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges.Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z.Gan L, et al.Front Immunol. 2024 Sep 2;15:1429836. doi: 10.3389/fimmu.2024.1429836. eCollection 2024.Front Immunol. 2024.PMID:39286246Free PMC article.Review.
- Experimental models of hepatocellular carcinoma.Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM.Newell P, et al.J Hepatol. 2008 May;48(5):858-79. doi: 10.1016/j.jhep.2008.01.008. Epub 2008 Jan 30.J Hepatol. 2008.PMID:18314222Free PMC article.Review.
References
- Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108. - PubMed
- Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87. - PubMed
- Lau JWY, Leow CK. Surgical management. In: Leong ASY, Liew CT, Lau JWY, Johnson PJ, editors. Hepatocellular Carcinoma: Diagnosis, investigation and management. London: Arnold; 1999. pp. 147–72.
- Robinson WS. Molecular events in the pathogenesis of hepadnavirus-associated hepatocellular carcinoma. Annu Rev Med. 1994;45:297–323. - PubMed
- Simonetti RG, Cottone M, Craxi A, et al. Prevalence of antibodies to hepatitis C virus in hepatocellular carcinoma. Lancet. 1989;2:1338. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous