A compact multiphoton 3D imaging system for recording fast neuronal activity
- PMID:17684546
- PMCID: PMC1933593
- DOI: 10.1371/journal.pone.0000699
A compact multiphoton 3D imaging system for recording fast neuronal activity
Abstract
We constructed a simple and compact imaging system designed specifically for the recording of fast neuronal activity in a 3D volume. The system uses an Yb:KYW femtosecond laser we designed for use with acousto-optic deflection. An integrated two-axis acousto-optic deflector, driven by digitally synthesized signals, can target locations in three dimensions. Data acquisition and the control of scanning are performed by a LeCroy digital oscilloscope. The total cost of construction was one order of magnitude lower than that of a typical Ti:sapphire system. The entire imaging apparatus, including the laser, fits comfortably onto a small rig for electrophysiology. Despite the low cost and simplicity, the convergence of several new technologies allowed us to achieve the following capabilities: i) full-frame acquisition at video rates suitable for patch clamping; ii) random access in under ten microseconds with dwelling ability in the nominal focal plane; iii) three-dimensional random access with the ability to perform fast volume sweeps at kilohertz rates; and iv) fluorescence lifetime imaging. We demonstrate the ability to record action potentials with high temporal resolution using intracellularly loaded potentiometric dye di-2-ANEPEQ. Our design proffers easy integration with electrophysiology and promises a more widespread adoption of functional two-photon imaging as a tool for the study of neuronal activity. The software and firmware we developed is available for download at http://neurospy.org/ under an open source license.
Conflict of interest statement
Figures






Similar articles
- Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope.Fernández-Alfonso T, Nadella KM, Iacaruso MF, Pichler B, Roš H, Kirkby PA, Silver RA.Fernández-Alfonso T, et al.J Neurosci Methods. 2014 Jan 30;222:69-81. doi: 10.1016/j.jneumeth.2013.10.021. Epub 2013 Nov 4.J Neurosci Methods. 2014.PMID:24200507Free PMC article.
- Random-Access Multiphoton Microscopy for Fast Three-Dimensional Imaging.Reddy GD, Cotton RJ, Tolias AS, Saggau P.Reddy GD, et al.Adv Exp Med Biol. 2015;859:455-72. doi: 10.1007/978-3-319-17641-3_18.Adv Exp Med Biol. 2015.PMID:26238064Review.
- Fast three-dimensional laser scanning scheme using acousto-optic deflectors.Reddy GD, Saggau P.Reddy GD, et al.J Biomed Opt. 2005 Nov-Dec;10(6):064038. doi: 10.1117/1.2141504.J Biomed Opt. 2005.PMID:16409103
- Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy.Iyer V, Hoogland TM, Saggau P.Iyer V, et al.J Neurophysiol. 2006 Jan;95(1):535-45. doi: 10.1152/jn.00865.2005. Epub 2005 Oct 12.J Neurophysiol. 2006.PMID:16221746
- Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.Roberts MS, Dancik Y, Prow TW, Thorling CA, Lin LL, Grice JE, Robertson TA, König K, Becker W.Roberts MS, et al.Eur J Pharm Biopharm. 2011 Apr;77(3):469-88. doi: 10.1016/j.ejpb.2010.12.023. Epub 2011 Jan 21.Eur J Pharm Biopharm. 2011.PMID:21256962Review.
Cited by
- Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing.Wilt BA, Fitzgerald JE, Schnitzer MJ.Wilt BA, et al.Biophys J. 2013 Jan 8;104(1):51-62. doi: 10.1016/j.bpj.2012.07.058. Epub 2013 Jan 8.Biophys J. 2013.PMID:23332058Free PMC article.
- Fast Kalman filtering on quasilinear dendritic trees.Paninski L.Paninski L.J Comput Neurosci. 2010 Apr;28(2):211-28. doi: 10.1007/s10827-009-0200-4. Epub 2009 Nov 27.J Comput Neurosci. 2010.PMID:19943188
- Multi-neuronal recording in unrestrained animals with all acousto-optic random-access line-scanning two-photon microscopy.Yamaguchi A, Wu R, McNulty P, Karagyozov D, Mihovilovic Skanata M, Gershow M.Yamaguchi A, et al.Front Neurosci. 2023 Jun 14;17:1135457. doi: 10.3389/fnins.2023.1135457. eCollection 2023.Front Neurosci. 2023.PMID:37389365Free PMC article.
- Random access multiphoton (RAMP) microscopy for investigation of cerebral blood flow regulation mechanisms.Christensen DJ, Nedergaard M.Christensen DJ, et al.Proc SPIE Int Soc Opt Eng. 2012 Jan;8226:822633. doi: 10.1117/12.907141. Epub 2012 Feb 9.Proc SPIE Int Soc Opt Eng. 2012.PMID:34267415Free PMC article.
- Advances in light microscopy for neuroscience.Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ.Wilt BA, et al.Annu Rev Neurosci. 2009;32:435-506. doi: 10.1146/annurev.neuro.051508.135540.Annu Rev Neurosci. 2009.PMID:19555292Free PMC article.Review.
References
- Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248, 73 - PubMed
- Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature. 2005;433, 597 - PubMed
- Yasuda R, Harvey CD, Zhong H, Sobczyk A, van Aelst L, Svoboda K. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat. Neurosci. 2006;9, 283 - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources