Common functions for diverse small RNAs of land plants
- PMID:17601824
- PMCID: PMC1955733
- DOI: 10.1105/tpc.107.051706
Common functions for diverse small RNAs of land plants
Abstract
Endogenous small RNAs, including microRNAs (miRNAs) and short interfering RNAs (siRNAs), are critical components of plant gene regulation. Some abundant miRNAs involved in developmental control are conserved between anciently diverged plants, while many other less-abundant miRNAs appear to have recently emerged in the Arabidopsis thaliana lineage. Using large-scale sequencing of small RNAs, we extended the known diversity of miRNAs in basal plants to include 88 confidently annotated miRNA families in the moss Physcomitrella patens and 44 in the lycopod Selaginella moellendorffii. Cleavage of 29 targets directed by 14 distinct P. patens miRNA families and a trans-acting siRNA (ta-siRNA) was experimentally confirmed. Despite a core set of 12 miRNA families also expressed in angiosperms, weakly expressed and apparently lineage-specific miRNAs accounted for the majority of miRNA diversity in both species. Nevertheless, the molecular functions of several of these lineage-specific small RNAs matched those of angiosperms, despite dissimilarities in the small RNA sequences themselves, including small RNAs that mediated negative feedback regulation of the miRNA pathway and miR390-dependent ta-siRNAs that guided the cleavage of AUXIN RESPONSE FACTOR mRNAs. Diverse, lineage-specific, small RNAs can therefore perform common biological functions in plants.
Figures






Similar articles
- Comprehensive Annotation of Physcomitrella patens Small RNA Loci Reveals That the Heterochromatic Short Interfering RNA Pathway Is Largely Conserved in Land Plants.Coruh C, Cho SH, Shahid S, Liu Q, Wierzbicki A, Axtell MJ.Coruh C, et al.Plant Cell. 2015 Aug;27(8):2148-62. doi: 10.1105/tpc.15.00228. Epub 2015 Jul 24.Plant Cell. 2015.PMID:26209555Free PMC article.
- Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development.Cho SH, Addo-Quaye C, Coruh C, Arif MA, Ma Z, Frank W, Axtell MJ.Cho SH, et al.PLoS Genet. 2008 Dec;4(12):e1000314. doi: 10.1371/journal.pgen.1000314. Epub 2008 Dec 19.PLoS Genet. 2008.PMID:19096705Free PMC article.
- Endogenous Small-Noncoding RNAs and Potential Functions in Desiccation Tolerance in Physcomitrella Patens.Xia J, Wang X, Perroud PF, He Y, Quatrano R, Zhang W.Xia J, et al.Sci Rep. 2016 Jul 22;6:30118. doi: 10.1038/srep30118.Sci Rep. 2016.PMID:27443635Free PMC article.
- Role of RNA interference (RNAi) in the Moss Physcomitrella patens.Arif MA, Frank W, Khraiwesh B.Arif MA, et al.Int J Mol Sci. 2013 Jan 14;14(1):1516-40. doi: 10.3390/ijms14011516.Int J Mol Sci. 2013.PMID:23344055Free PMC article.Review.
- MicroRNAs in the moss Physcomitrella patens.Arazi T.Arazi T.Plant Mol Biol. 2012 Sep;80(1):55-65. doi: 10.1007/s11103-011-9761-5. Epub 2011 Mar 4.Plant Mol Biol. 2012.PMID:21373961Review.
Cited by
- Novel and Recently Evolved MicroRNA Clusters Regulate Expansive F-BOX Gene Networks through Phased Small Interfering RNAs in Wild Diploid Strawberry.Xia R, Ye S, Liu Z, Meyers BC, Liu Z.Xia R, et al.Plant Physiol. 2015 Sep;169(1):594-610. doi: 10.1104/pp.15.00253. Epub 2015 Jul 4.Plant Physiol. 2015.PMID:26143249Free PMC article.
- miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis.Confraria A, Martinho C, Elias A, Rubio-Somoza I, Baena-González E.Confraria A, et al.Front Plant Sci. 2013 Jun 20;4:197. doi: 10.3389/fpls.2013.00197. eCollection 2013.Front Plant Sci. 2013.PMID:23802004Free PMC article.
- Blocking IbmiR319a Impacts Plant Architecture and Reduces Drought Tolerance in Sweet Potato.Ren L, Zhang T, Wu H, Ge X, Wan H, Chen S, Li Z, Ma D, Wang A.Ren L, et al.Genes (Basel). 2022 Feb 24;13(3):404. doi: 10.3390/genes13030404.Genes (Basel). 2022.PMID:35327958Free PMC article.
- Identification and characterization of a novel miR159 target not related to MYB in tomato.Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T.Buxdorf K, et al.Planta. 2010 Oct;232(5):1009-22. doi: 10.1007/s00425-010-1231-9. Epub 2010 Jul 27.Planta. 2010.PMID:20661587
- Novel miR390-dependent transacting siRNA precursors in plants revealed by a PCR-based experimental approach and database analysis.Krasnikova MS, Milyutina IA, Bobrova VK, Ozerova LV, Troitsky AV, Solovyev AG, Morozov SY.Krasnikova MS, et al.J Biomed Biotechnol. 2009;2009:952304. doi: 10.1155/2009/952304. Epub 2009 Oct 13.J Biomed Biotechnol. 2009.PMID:19859540Free PMC article.
References
- Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouche, N., Gasciolli, V., and Vaucheret, H. (2006). DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 16 927–932. - PubMed
- Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121 207–221. - PubMed
- Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spatafora, J.W., and Carrington, J.C. (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat. Genet. 36 1282–1290. - PubMed
- Arazi, T., Talmor-Neiman, M., Stav, R., Riese, M., Huijser, P., and Baulcombe, D.C. (2005). Cloning and characterization of micro-RNAs from moss. Plant J. 43 837–848. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases