Epstein-Barr virus and virus human protein interaction maps
- PMID:17446270
- PMCID: PMC1863443
- DOI: 10.1073/pnas.0702332104
Epstein-Barr virus and virus human protein interaction maps
Abstract
A comprehensive mapping of interactions among Epstein-Barr virus (EBV) proteins and interactions of EBV proteins with human proteins should provide specific hypotheses and a broad perspective on EBV strategies for replication and persistence. Interactions of EBV proteins with each other and with human proteins were assessed by using a stringent high-throughput yeast two-hybrid system. Overall, 43 interactions between EBV proteins and 173 interactions between EBV and human proteins were identified. EBV-EBV and EBV-human protein interaction, or "interactome" maps provided a framework for hypotheses of protein function. For example, LF2, an EBV protein of unknown function interacted with the EBV immediate early R transactivator (Rta) and was found to inhibit Rta transactivation. From a broader perspective, EBV genes can be divided into two evolutionary classes, "core" genes, which are conserved across all herpesviruses and subfamily specific, or "noncore" genes. Our EBV-EBV interactome map is enriched for interactions among proteins in the same evolutionary class. Furthermore, human proteins targeted by EBV proteins were enriched for highly connected or "hub" proteins and for proteins with relatively short paths to all other proteins in the human interactome network. Targeting of hubs might be an efficient mechanism for EBV reorganization of cellular processes.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
- Role of the TSG101 gene in Epstein-Barr virus late gene transcription.Chua HH, Lee HH, Chang SS, Lu CC, Yeh TH, Hsu TY, Cheng TH, Cheng JT, Chen MR, Tsai CH.Chua HH, et al.J Virol. 2007 Mar;81(5):2459-71. doi: 10.1128/JVI.02289-06. Epub 2006 Dec 20.J Virol. 2007.PMID:17182691Free PMC article.
- Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta.Chang Y, Lee HH, Chen YT, Lu J, Wu SY, Chen CW, Takada K, Tsai CH.Chang Y, et al.J Virol. 2006 Aug;80(15):7748-55. doi: 10.1128/JVI.02608-05.J Virol. 2006.PMID:16840354Free PMC article.
- Comprehensive Analyses of Intraviral Epstein-Barr Virus Protein-Protein Interactions Hint Central Role of BLRF2 in the Tegument Network.Hara Y, Watanabe T, Yoshida M, Masud HMAA, Kato H, Kondo T, Suzuki R, Kurose S, Uddin MK, Arata M, Miyagi S, Yanagi Y, Sato Y, Kimura H, Murata T.Hara Y, et al.J Virol. 2022 Jul 27;96(14):e0051822. doi: 10.1128/jvi.00518-22. Epub 2022 Jul 11.J Virol. 2022.PMID:35862711Free PMC article.
- Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.Niller HH, Wolf H, Minarovits J.Niller HH, et al.Autoimmunity. 2008 May;41(4):298-328. doi: 10.1080/08916930802024772.Autoimmunity. 2008.PMID:18432410Review.
- [Research Advances in Target Genes of Epstein-Barr Virus-encoded MicroRNAs].Gao L, Ai J, Xie Z, Shen K.Gao L, et al.Bing Du Xue Bao. 2016 Mar;32(2):229-34.Bing Du Xue Bao. 2016.PMID:27396169Review.Chinese.
Cited by
- The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.de Chassey B, Aublin-Gex A, Ruggieri A, Meyniel-Schicklin L, Pradezynski F, Davoust N, Chantier T, Tafforeau L, Mangeot PE, Ciancia C, Perrin-Cocon L, Bartenschlager R, André P, Lotteau V.de Chassey B, et al.PLoS Pathog. 2013;9(7):e1003440. doi: 10.1371/journal.ppat.1003440. Epub 2013 Jul 4.PLoS Pathog. 2013.PMID:23853584Free PMC article.
- Characterization and intracellular trafficking of Epstein-Barr virus BBLF1, a protein involved in virion maturation.Chiu YF, Sugden B, Chang PJ, Chen LW, Lin YJ, Lan YC, Lai CH, Liou JY, Liu ST, Hung CH.Chiu YF, et al.J Virol. 2012 Sep;86(18):9647-55. doi: 10.1128/JVI.01126-12. Epub 2012 Jun 27.J Virol. 2012.PMID:22740416Free PMC article.
- Integrative Network Biology Framework Elucidates Molecular Mechanisms of SARS-CoV-2 Pathogenesis.Kumar N, Mishra B, Mehmood A, Athar M, Mukhtar MS.Kumar N, et al.SSRN [Preprint]. 2020 May 5:3581857. doi: 10.2139/ssrn.3581857.SSRN. 2020.Update in:iScience. 2020 Sep 25;23(9):101526. doi: 10.1016/j.isci.2020.101526.PMID:32714115Free PMC article.Updated.Preprint.
- Omics strategies for revealing Yersinia pestis virulence.Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y.Yang R, et al.Front Cell Infect Microbiol. 2012 Dec 13;2:157. doi: 10.3389/fcimb.2012.00157. eCollection 2012.Front Cell Infect Microbiol. 2012.PMID:23248778Free PMC article.Review.
- Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs.Eskandarzade N, Ghorbani A, Samarfard S, Diaz J, Guzzi PH, Fariborzi N, Tahmasebi A, Izadpanah K.Eskandarzade N, et al.Comput Biol Med. 2022 Jul;146:105575. doi: 10.1016/j.compbiomed.2022.105575. Epub 2022 Apr 30.Comput Biol Med. 2022.PMID:35533462Free PMC article.Review.
References
- de Jesus O, Smith PR, Spender LC, Elgueta Karstegl C, Niller HH, Huang D, Farrell PJ. J Gen Virol. 2003;84:1443–1450. - PubMed
- Dolan A, Addison C, Gatherer D, Davison AJ, McGeoch DJ. Virology. 2006;350:164–170. - PubMed
- Kieff E, Rickinson AB. In: Fields Virology. Knipe DM, Howley PM, editors. Vol 2. Philadelphia: Lippincott, Williams, and Wilkins; 2001. pp. 2511–2574.
- Rickinson A, Kieff E. In: Fields Virology. Knipe DM, Howley PM, editors. Vol 2. Philadelphia: Lippincott, Williams, and Wilkins; 2001. pp. 2575–2628.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials