Isoflurane depresses the response of inspiratory hypoglossal motoneurons to serotonin in vivo
- PMID:17413911
- DOI: 10.1097/01.anes.0000264750.93769.99
Isoflurane depresses the response of inspiratory hypoglossal motoneurons to serotonin in vivo
Abstract
Background: Endogenous serotonin (5-HT) provides important excitatory drive to inspiratory hypoglossal motoneurons (IHMNs). In vitro studies show that activation of postsynaptic 5-HT receptors decreases a leak K+ channel conductance and depolarizes hypoglossal motoneurons (HMNs). In contrast, volatile anesthetics increase this leak K+ channel conductance, which causes neuronal membrane hyperpolarization and depresses HMN excitability. Clinical studies show upper airway obstruction, indicating HMN depression, even at subanesthetic concentrations. The authors hypothesized that if anesthetic activation of leak K+ channels caused neuronal depression in vivo, this effect could be antagonized with serotonin. In this case, the neuronal response to picoejected serotonin would be greater during isoflurane than with no isoflurane.
Methods: Studies were performed in decerebrate, vagotomized, paralyzed, and mechanically ventilated dogs during hypercapnic hyperoxia. The authors studied the effect of approximately 0.3 minimum alveolar concentration (MAC) isoflurane on the spontaneous discharge frequency patterns of single IHMNs and on the neuronal response to picoejection of 5-HT.
Results: Normalized data (mean +/- SD, n = 19) confirmed that 0.3 +/- 0.1 MAC isoflurane markedly reduced the spontaneous peak discharge frequency by 48 +/- 19% (P < 0.001) and depressed the slope of the spontaneous discharge patterns. The increase in neuronal frequency in response to 5-HT was reduced by 34 +/- 22% by isoflurane (P < 0.001).
Conclusion: Subanesthetic concentrations of isoflurane strongly depressed canine IHMNs in vivo. The neuronal response to 5-HT was also depressed by isoflurane, suggesting that anesthetic activation of leak K+ channels, which is expected to result in a larger 5-HT response, was not a dominant mechanism in this depression.
Similar articles
- Serotonergic modulation of inspiratory hypoglossal motoneurons in decerebrate dogs.Brandes IF, Zuperku EJ, Stucke AG, Jakovcevic D, Hopp FA, Stuth EA.Brandes IF, et al.J Neurophysiol. 2006 Jun;95(6):3449-59. doi: 10.1152/jn.00823.2005. Epub 2006 Feb 22.J Neurophysiol. 2006.PMID:16495364Free PMC article.
- Halothane enhances gamma-aminobutyric acid receptor type A function but does not change overall inhibition in inspiratory premotor neurons in a decerebrate dog model.Stucke AG, Zuperku EJ, Tonkovic-Capin V, Krolo M, Hopp FA, Kampine JP, Stuth EA.Stucke AG, et al.Anesthesiology. 2003 Dec;99(6):1303-12. doi: 10.1097/00000542-200312000-00011.Anesthesiology. 2003.PMID:14639142
- Isoflurane enhances spontaneous Ca(2+) oscillations in developing rat hippocampal neurons in vitro.Xiang Q, Tan L, Zhao YL, Wang JT, Jin XG, Luo AL.Xiang Q, et al.Acta Anaesthesiol Scand. 2009 Jul;53(6):765-73. doi: 10.1111/j.1399-6576.2009.01960.x. Epub 2009 Apr 14.Acta Anaesthesiol Scand. 2009.PMID:19388897
- Anesthetic effects on synaptic transmission and gain control in respiratory control.Stuth EA, Stucke AG, Brandes IF, Zuperku EJ.Stuth EA, et al.Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):151-9. doi: 10.1016/j.resp.2008.05.007.Respir Physiol Neurobiol. 2008.PMID:18583201Review.
- Presynaptic inhibition by serotonin: a possible mechanism for switching motor output of the hypoglossal nucleus.Singer JH, Berger AJ.Singer JH, et al.Sleep. 1996 Dec;19(10 Suppl):S146-9. doi: 10.1093/sleep/19.suppl_10.146.Sleep. 1996.PMID:9085495Review.
Cited by
- Role of inhibitory neurotransmission in the control of canine hypoglossal motoneuron activity in vivo.Sanchez A, Mustapic S, Zuperku EJ, Stucke AG, Hopp FA, Stuth EA.Sanchez A, et al.J Neurophysiol. 2009 Mar;101(3):1211-21. doi: 10.1152/jn.90279.2008. Epub 2008 Dec 17.J Neurophysiol. 2009.PMID:19091929Free PMC article.
- The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System.Hao X, Yang Y, Liu J, Zhang D, Ou M, Ke B, Zhu T, Zhou C.Hao X, et al.Curr Neuropharmacol. 2024;22(2):217-240. doi: 10.2174/1570159X21666230810110901.Curr Neuropharmacol. 2024.PMID:37563812Free PMC article.Review.
- Reduced respiratory neural activity elicits phrenic motor facilitation.Mahamed S, Strey KA, Mitchell GS, Baker-Herman TL.Mahamed S, et al.Respir Physiol Neurobiol. 2011 Mar 15;175(3):303-9. doi: 10.1016/j.resp.2010.12.005. Epub 2010 Dec 15.Respir Physiol Neurobiol. 2011.PMID:21167322Free PMC article.
- Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy.Gurges P, Liu H, Horner RL.Gurges P, et al.Sleep. 2021 Jan 21;44(1):zsaa144. doi: 10.1093/sleep/zsaa144.Sleep. 2021.PMID:32745213Free PMC article.
- Sleep and Anesthesia - Common mechanisms of action.Vacas S, Kurien P, Maze M.Vacas S, et al.Sleep Med Clin. 2013 Mar;8(1):1-9. doi: 10.1016/j.jsmc.2012.11.009.Sleep Med Clin. 2013.PMID:28747855Free PMC article.No abstract available.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources