Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

Review
.2007;31(4):597-618.
doi: 10.1016/j.neubiorev.2006.12.002. Epub 2007 Jan 23.

Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder

Affiliations
Review

Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder

Michael A van der Kooij et al. Neurosci Biobehav Rev.2007.

Abstract

Several models of attention-deficit hyperactivity disorder (ADHD) have been proposed, ranging from administration of neurotoxins to genetically manipulated models. These models are used to gain insight into ADHD as a disorder and assist in the discovery of new therapeutic strategies. However, the information gained from these models differs, depending to a large extent on the validity (or otherwise) of the model. Thus the insights gained from these models with respect to the pathophysiology and aetiology of ADHD remains inconclusive. No animal model resembles the clinical situation of ADHD perfectly but good animal models of ADHD should mimic its characteristics, confirm to an underlying theory of ADHD and ultimately make predictions of future therapies. While the involvement of dopamine (DA) in ADHD has been established, the evaluation of rodent models of ADHD particularly with respect to dopaminergic systems is attempted here. It is concluded that the neonatal 6-hydroxy-dopamine lesioned rat and DA transporter knockout/knockdown mice have the highest degree of validity for ADHD.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp