As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi
- PMID:17148364
- PMCID: PMC1618886
- DOI: 10.1098/rsbl.2005.0424
As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi
Abstract
At present there is no consensus theory explaining the evolutionary stability of mutualistic interactions. However, the question is whether there are general 'rules', or whether each particular mutualism needs a unique explanation. Here, I address the ultimate evolutionary stability of the 'agricultural' mutualism between fungus-growing termites and Termitomyces fungi, and provide a proximate mechanism for how stability is achieved. The key to the proposed mechanism is the within-nest propagation mode of fungal symbionts by termites. The termites suppress horizontal fungal transmission by consuming modified unripe mushrooms (nodules) for food. However, these nodules provide asexual gut-resistant spores that form the inoculum of new substrate. This within-nest propagation has two important consequences: (i) the mutualistic fungi undergo severe, recurrent bottlenecks, so that the fungus is likely to be in monoculture and (ii) the termites 'artificially' select for high nodule production, because their fungal food source also provides the inoculum for the next harvest. I also provide a brief comparison of the termite-fungus mutualism with the analogous agricultural mutualism between attine ants and fungi. This comparison shows that--although common factors for the ultimate evolutionary stability of mutualisms can be identified--the proximate mechanisms can be fundamentally different between different mutualisms.
Figures

Similar articles
- The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis.Wisselink M, Aanen DK, van 't Padje A.Wisselink M, et al.Insects. 2020 Aug 13;11(8):527. doi: 10.3390/insects11080527.Insects. 2020.PMID:32823564Free PMC article.Review.
- Ancestral predisposition toward a domesticated lifestyle in the termite-cultivated fungus Termitomyces.van de Peppel LJJ, Nieuwenhuis M, Auxier B, Grum-Grzhimaylo AA, Cárdenas ME, de Beer ZW, Lodge DJ, Smith ME, Kuyper TW, Franco-Molano AE, Baroni TJ, Aanen DK.van de Peppel LJJ, et al.Curr Biol. 2021 Oct 11;31(19):4413-4421.e5. doi: 10.1016/j.cub.2021.07.070. Epub 2021 Aug 16.Curr Biol. 2021.PMID:34403645
- The evolution of fungus-growing termites and their mutualistic fungal symbionts.Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ.Aanen DK, et al.Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92. doi: 10.1073/pnas.222313099. Epub 2002 Oct 17.Proc Natl Acad Sci U S A. 2002.PMID:12386341Free PMC article.
- Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa.Aanen DK, Ros VI, de Fine Licht HH, Mitchell J, de Beer ZW, Slippers B, Rouland-Lefèvre C, Boomsma JJ.Aanen DK, et al.BMC Evol Biol. 2007 Jul 13;7:115. doi: 10.1186/1471-2148-7-115.BMC Evol Biol. 2007.PMID:17629911Free PMC article.
- Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota.Poulsen M.Poulsen M.Environ Microbiol. 2015 Aug;17(8):2562-72. doi: 10.1111/1462-2920.12765. Epub 2015 Mar 6.Environ Microbiol. 2015.PMID:25581852Review.
Cited by
- Diversity of Termitomyces associated with fungus-farming termites assessed by cultural and culture-independent methods.Makonde HM, Boga HI, Osiemo Z, Mwirichia R, Stielow JB, Göker M, Klenk HP.Makonde HM, et al.PLoS One. 2013;8(2):e56464. doi: 10.1371/journal.pone.0056464. Epub 2013 Feb 20.PLoS One. 2013.PMID:23437139Free PMC article.
- First experimental evidence for active farming in ambrosia beetles and strong heredity of garden microbiomes.Diehl JMC, Kowallik V, Keller A, Biedermann PHW.Diehl JMC, et al.Proc Biol Sci. 2022 Nov 9;289(1986):20221458. doi: 10.1098/rspb.2022.1458. Epub 2022 Nov 2.Proc Biol Sci. 2022.PMID:36321493Free PMC article.
- Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis).Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, Long Y, Xie L, Wang S, Huang Y, Zhou Z.Liu N, et al.PLoS One. 2013 Jul 17;8(7):e69184. doi: 10.1371/journal.pone.0069184. Print 2013.PLoS One. 2013.PMID:23874908Free PMC article.
- Fungiculture or Termite Husbandry? The Ruminant Hypothesis.Nobre T, Aanen DK.Nobre T, et al.Insects. 2012 Mar 16;3(1):307-23. doi: 10.3390/insects3010307.Insects. 2012.PMID:26467962Free PMC article.
- Patterns of coevolution between ambrosia beetle mycangia and theCeratocystidaceae, with five new fungal genera and seven new species.Mayers CG, Harrington TC, Masuya H, Jordal BH, McNew DL, Shih HH, Roets F, Kietzka GJ.Mayers CG, et al.Persoonia. 2020 Jun;44:41-66. doi: 10.3767/persoonia.2020.44.02. Epub 2019 Jul 29.Persoonia. 2020.PMID:33116335Free PMC article.
References
- Aanen D.K, Boomsma J.J. Evolutionary dynamics of the mutualistic symbiosis between fungus-growing termites and Termitomyces fungi. In: Vega F, Blackwell M, editors. Insect–fungal associations: ecology and evolution. Oxford University Press; Oxford: 2005. pp. 191–211.
- Aanen D.K, Eggleton P, Rouland-Lefèvre C, Guldberg-Frøslev T, Rosendahl S, Boomsma J.J. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA. 2002;99:14 887–14 992.doi:10.1073/pnas.222313099 - DOI - PMC - PubMed
- Bathellier J. Contribution à l' etude systématique et biologique de termites de l'Indo-Chine. Faune Colonies Franc. 1927;1:125–365.
- Bot A.N.M, Rehner S.A, Boomsma J.J. Partial incompatibility between ants and symbiotic fungi in two sympatric species of Acromyrmex leaf-cutting ants. Evolution. 2001;55:1980–1991. - PubMed
- Clémençon, H. 1997 Anatomie der Hymenomyceten (Anatomy of Hymenomycetes). Teufen: F. Flück-Wirth.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials